The Sturm–Liouville operator with rapidly growing potential and the asymptotics of its spectrum
Čebyševskij sbornik, Tome 25 (2024) no. 3, pp. 143-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the asymptotic behavior of the discrete spectrum of the Sturm–Liouville operator given on $\mathbb{R}_{+}$ by the expression $-y''+q(x)y$ and the zero boundary condition $y(0)\cos {\alpha}+y'(0)\sin{\alpha}=0$, for rapidly growing potentials $q(x)$. The asymptotics of the eigenvalues of the operator for the classes of potentials are obtained, which characterize the rate of their growth at infinity.
Keywords: differential operator, spectrum, asymptotics.
@article{CHEB_2024_25_3_a8,
     author = {A. Kachkina},
     title = {The {Sturm{\textendash}Liouville} operator with rapidly growing potential and the asymptotics of its spectrum},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {143--157},
     year = {2024},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a8/}
}
TY  - JOUR
AU  - A. Kachkina
TI  - The Sturm–Liouville operator with rapidly growing potential and the asymptotics of its spectrum
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 143
EP  - 157
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a8/
LA  - ru
ID  - CHEB_2024_25_3_a8
ER  - 
%0 Journal Article
%A A. Kachkina
%T The Sturm–Liouville operator with rapidly growing potential and the asymptotics of its spectrum
%J Čebyševskij sbornik
%D 2024
%P 143-157
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a8/
%G ru
%F CHEB_2024_25_3_a8
A. Kachkina. The Sturm–Liouville operator with rapidly growing potential and the asymptotics of its spectrum. Čebyševskij sbornik, Tome 25 (2024) no. 3, pp. 143-157. http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a8/