On the canonical Ramsey theorem of Erdős and Rado: a short proof using ultrafilter theory
Čebyševskij sbornik, Tome 25 (2024) no. 3, pp. 396-407
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper gives a short proof of the canonical Ramsey theorem of Erdős and Rado using ultrafilter theory.
Keywords:
Ramsey theorem, canonical Ramsey theorem, ultrafilter, ultrafilter extension
Mots-clés : quasi-normal ultrafilter.
Mots-clés : quasi-normal ultrafilter.
@article{CHEB_2024_25_3_a27,
author = {N. A. V. Mir and N. L. Poliakov},
title = {On the canonical {Ramsey} theorem of {Erd\H{o}s} and {Rado:} a short proof using ultrafilter theory},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {396--407},
year = {2024},
volume = {25},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a27/}
}
TY - JOUR AU - N. A. V. Mir AU - N. L. Poliakov TI - On the canonical Ramsey theorem of Erdős and Rado: a short proof using ultrafilter theory JO - Čebyševskij sbornik PY - 2024 SP - 396 EP - 407 VL - 25 IS - 3 UR - http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a27/ LA - ru ID - CHEB_2024_25_3_a27 ER -
N. A. V. Mir; N. L. Poliakov. On the canonical Ramsey theorem of Erdős and Rado: a short proof using ultrafilter theory. Čebyševskij sbornik, Tome 25 (2024) no. 3, pp. 396-407. http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a27/