On the canonical Ramsey theorem of Erdős and Rado: a short proof using ultrafilter theory
Čebyševskij sbornik, Tome 25 (2024) no. 3, pp. 396-407 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper gives a short proof of the canonical Ramsey theorem of Erdős and Rado using ultrafilter theory.
Keywords: Ramsey theorem, canonical Ramsey theorem, ultrafilter, ultrafilter extension
Mots-clés : quasi-normal ultrafilter.
@article{CHEB_2024_25_3_a27,
     author = {N. A. V. Mir and N. L. Poliakov},
     title = {On the canonical {Ramsey} theorem of {Erd\H{o}s} and {Rado:} a short proof using ultrafilter theory},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {396--407},
     year = {2024},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a27/}
}
TY  - JOUR
AU  - N. A. V. Mir
AU  - N. L. Poliakov
TI  - On the canonical Ramsey theorem of Erdős and Rado: a short proof using ultrafilter theory
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 396
EP  - 407
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a27/
LA  - ru
ID  - CHEB_2024_25_3_a27
ER  - 
%0 Journal Article
%A N. A. V. Mir
%A N. L. Poliakov
%T On the canonical Ramsey theorem of Erdős and Rado: a short proof using ultrafilter theory
%J Čebyševskij sbornik
%D 2024
%P 396-407
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a27/
%G ru
%F CHEB_2024_25_3_a27
N. A. V. Mir; N. L. Poliakov. On the canonical Ramsey theorem of Erdős and Rado: a short proof using ultrafilter theory. Čebyševskij sbornik, Tome 25 (2024) no. 3, pp. 396-407. http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a27/