A certain formula of Liouville
Čebyševskij sbornik, Tome 25 (2024) no. 3, pp. 335-342 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical Liouville formula expressing the multiple integral over a multidimensional pyramid through the integral over a segment is discussed. It is shown how the Liouville formula is related to the special sum, containing successive antiderivatives of the integrand. Specific examples are given to illustrate the general result. Along the way, a compact formula for calculating the power moments of an exponential function is proved.
Keywords: multiple integral, factorial, subfactorial, Euler number.
Mots-clés : Liouville formula, binomial sum
@article{CHEB_2024_25_3_a20,
     author = {Yu. V. Andrianova and V. B. Sherstyukov},
     title = {A certain formula of {Liouville}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {335--342},
     year = {2024},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a20/}
}
TY  - JOUR
AU  - Yu. V. Andrianova
AU  - V. B. Sherstyukov
TI  - A certain formula of Liouville
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 335
EP  - 342
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a20/
LA  - ru
ID  - CHEB_2024_25_3_a20
ER  - 
%0 Journal Article
%A Yu. V. Andrianova
%A V. B. Sherstyukov
%T A certain formula of Liouville
%J Čebyševskij sbornik
%D 2024
%P 335-342
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a20/
%G ru
%F CHEB_2024_25_3_a20
Yu. V. Andrianova; V. B. Sherstyukov. A certain formula of Liouville. Čebyševskij sbornik, Tome 25 (2024) no. 3, pp. 335-342. http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a20/