On strongly star ideal compactness of topological spaces
Čebyševskij sbornik, Tome 25 (2024) no. 3, pp. 37-46
Cet article a éte moissonné depuis la source Math-Net.Ru
In this article we introduce the concept of strongly star $\mathrm{I}$-compactness and study some of its topological features. We represent some finite intersection like properties for both I-compact spaces and strongly star $\mathrm{I}$-compact spaces. Lastly we establish a relation between the countably $I_{fin}$-compact space and the strongly star $I_{fin}$-compact space. In order to identify the difference between the different versions of compactness we represent some counter examples. And some open problems are also posed in this article.
Keywords:
star ideal, star $\mathrm{I}$-compact, $I_{fin}$-compact space.
@article{CHEB_2024_25_3_a2,
author = {P. Bal and R. Das and S. Sarkar},
title = {On strongly star ideal compactness of topological spaces},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {37--46},
year = {2024},
volume = {25},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a2/}
}
P. Bal; R. Das; S. Sarkar. On strongly star ideal compactness of topological spaces. Čebyševskij sbornik, Tome 25 (2024) no. 3, pp. 37-46. http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a2/