On strongly star ideal compactness of topological spaces
Čebyševskij sbornik, Tome 25 (2024) no. 3, pp. 37-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article we introduce the concept of strongly star $\mathrm{I}$-compactness and study some of its topological features. We represent some finite intersection like properties for both I-compact spaces and strongly star $\mathrm{I}$-compact spaces. Lastly we establish a relation between the countably $I_{fin}$-compact space and the strongly star $I_{fin}$-compact space. In order to identify the difference between the different versions of compactness we represent some counter examples. And some open problems are also posed in this article.
Keywords: star ideal, star $\mathrm{I}$-compact, $I_{fin}$-compact space.
@article{CHEB_2024_25_3_a2,
     author = {P. Bal and R. Das and S. Sarkar},
     title = {On strongly star ideal compactness of topological spaces},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {37--46},
     year = {2024},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a2/}
}
TY  - JOUR
AU  - P. Bal
AU  - R. Das
AU  - S. Sarkar
TI  - On strongly star ideal compactness of topological spaces
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 37
EP  - 46
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a2/
LA  - ru
ID  - CHEB_2024_25_3_a2
ER  - 
%0 Journal Article
%A P. Bal
%A R. Das
%A S. Sarkar
%T On strongly star ideal compactness of topological spaces
%J Čebyševskij sbornik
%D 2024
%P 37-46
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a2/
%G ru
%F CHEB_2024_25_3_a2
P. Bal; R. Das; S. Sarkar. On strongly star ideal compactness of topological spaces. Čebyševskij sbornik, Tome 25 (2024) no. 3, pp. 37-46. http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a2/