On the validity of 0-1 law for shallow first order properties of very sparse random graphs
Čebyševskij sbornik, Tome 25 (2024) no. 3, pp. 299-334 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the binomial random graph $G(n,p)$ edges between every pair of vertices appear independently with probability $p$. The random graph obeys $0$-$1$ $k$-law, if, for every first order sentence, the probability that $G(n,p)$ satisfies it is either $0$ or $1$ in the limit (as $n\to\infty$). This paper addresses the following question: given a small $k$ and any $\ell$, does $G(n,n^{-l-1/\ell})$ satisfy $0$-$1$ $k$-law? We answer this question for $k=3$ and all $\ell$. We also prove that for $k=4$ and $\ell\in[1,40]\cup\{72\}$ $0$-$1$ $k$-law does not hold.
Keywords: Random graph, first order logic, $0$-$1$ law, quantifier depth, Ehrenfeucht game.
Mots-clés : binomial random graph
@article{CHEB_2024_25_3_a19,
     author = {R. R. Shefrukova},
     title = {On the validity of 0-1 law for shallow first order properties of very sparse random graphs},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {299--334},
     year = {2024},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a19/}
}
TY  - JOUR
AU  - R. R. Shefrukova
TI  - On the validity of 0-1 law for shallow first order properties of very sparse random graphs
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 299
EP  - 334
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a19/
LA  - ru
ID  - CHEB_2024_25_3_a19
ER  - 
%0 Journal Article
%A R. R. Shefrukova
%T On the validity of 0-1 law for shallow first order properties of very sparse random graphs
%J Čebyševskij sbornik
%D 2024
%P 299-334
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a19/
%G ru
%F CHEB_2024_25_3_a19
R. R. Shefrukova. On the validity of 0-1 law for shallow first order properties of very sparse random graphs. Čebyševskij sbornik, Tome 25 (2024) no. 3, pp. 299-334. http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a19/