On the validity of 0-1 law for shallow first order properties of very sparse random graphs
Čebyševskij sbornik, Tome 25 (2024) no. 3, pp. 299-334
Cet article a éte moissonné depuis la source Math-Net.Ru
In the binomial random graph $G(n,p)$ edges between every pair of vertices appear independently with probability $p$. The random graph obeys $0$-$1$ $k$-law, if, for every first order sentence, the probability that $G(n,p)$ satisfies it is either $0$ or $1$ in the limit (as $n\to\infty$). This paper addresses the following question: given a small $k$ and any $\ell$, does $G(n,n^{-l-1/\ell})$ satisfy $0$-$1$ $k$-law? We answer this question for $k=3$ and all $\ell$. We also prove that for $k=4$ and $\ell\in[1,40]\cup\{72\}$ $0$-$1$ $k$-law does not hold.
Keywords:
Random graph, first order logic, $0$-$1$ law, quantifier depth, Ehrenfeucht game.
Mots-clés : binomial random graph
Mots-clés : binomial random graph
@article{CHEB_2024_25_3_a19,
author = {R. R. Shefrukova},
title = {On the validity of 0-1 law for shallow first order properties of very sparse random graphs},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {299--334},
year = {2024},
volume = {25},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a19/}
}
R. R. Shefrukova. On the validity of 0-1 law for shallow first order properties of very sparse random graphs. Čebyševskij sbornik, Tome 25 (2024) no. 3, pp. 299-334. http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a19/