Quaternion algebras with unitary involutions having the same subfields
Čebyševskij sbornik, Tome 25 (2024) no. 3, pp. 226-235 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct a field $E$ such that there are infinitely many non-isomorphic quaternion $E$-algebras with unitary involution and all such algebras are split by any quadratic field extension of $E$.
Keywords: central division algebra, Brauer group, subfield
Mots-clés : genus.
@article{CHEB_2024_25_3_a14,
     author = {S. V. Tikhonov},
     title = {Quaternion algebras with unitary involutions having the same subfields},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {226--235},
     year = {2024},
     volume = {25},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a14/}
}
TY  - JOUR
AU  - S. V. Tikhonov
TI  - Quaternion algebras with unitary involutions having the same subfields
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 226
EP  - 235
VL  - 25
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a14/
LA  - ru
ID  - CHEB_2024_25_3_a14
ER  - 
%0 Journal Article
%A S. V. Tikhonov
%T Quaternion algebras with unitary involutions having the same subfields
%J Čebyševskij sbornik
%D 2024
%P 226-235
%V 25
%N 3
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a14/
%G ru
%F CHEB_2024_25_3_a14
S. V. Tikhonov. Quaternion algebras with unitary involutions having the same subfields. Čebyševskij sbornik, Tome 25 (2024) no. 3, pp. 226-235. http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a14/