On the simultaneous representation of numbers by the sum of five prime numbers
Čebyševskij sbornik, Tome 25 (2024) no. 3, pp. 11-36
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $X-$be a sufficiently large real number, $b_{1},b_{2},b_{3}-$be integers with the condition $1\le {{b}_{1}},{{b}_{2}},{{b}_{3}}\le X, a_{ij}, (i=1,2,3; j=\overline{1.5})$ positive integers, $p_{1},...,p_{5}-$prime numbers. Let us set $B=max\{3|a_{ij}|\} , (i=1,2,3; j=\overline{1.5}), \vec{b} = (b_{1},b_{2},b_{3}), K=36\sqrt{3}B^{5}|\vec{b}|, E_{3,5}(X)=card\{b_{i} |1\le {{b}_{i}}\le X, b_{i}\neq a_{i1} p_{1}+\cdots+a_{i5} p_{5}, i=1,2,3\}$. In the paper it is proved that the system $b_{i}=a_{i1}p_{1}+\cdots+a_{i5}p_{5}, (i=1,2,3)$ is solvable in prime numbers $p_{1},\cdots,p_{5}$, for all triples $\vec{b}=(b_{1}, b_{2},b_{3}), 1\le {{b}_{1}},{{b}_{2}},{{b}_{3}}\le X$, with the exception of no more than $E_{3,5}(X)$ triples of them, and a lower bound is obtained for the $R(\vec{b})-$number of solutions of this system, that is, the inequality $R(\vec{b})>> K^{2-\varepsilon}( \log K)^{-5}$ is proved to be true, for all $(b_{1},b_{2},b_{3})$ with the exception of no more than $X^{3-\varepsilon}$ triples of them.
Keywords:
estimate, positive solvability, congruent solvability, fixed number, prime number, system of linear equations, power estimate
Mots-clés : Euler's constant, effective constant, comparisons.
Mots-clés : Euler's constant, effective constant, comparisons.
@article{CHEB_2024_25_3_a1,
author = {I. A. Allakov and B. Kh. Erdonov},
title = {On the simultaneous representation of numbers by the sum of five prime numbers},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {11--36},
year = {2024},
volume = {25},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a1/}
}
I. A. Allakov; B. Kh. Erdonov. On the simultaneous representation of numbers by the sum of five prime numbers. Čebyševskij sbornik, Tome 25 (2024) no. 3, pp. 11-36. http://geodesic.mathdoc.fr/item/CHEB_2024_25_3_a1/