Scattering theory for the loaded negative order Korteweg--de Vries equation
Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 169-180

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the loaded negative order Korteweg–de Vries equation. The evolution of the spectral data of the Sturm–Liouville operator with a potential associated with the solution of the loaded negative order Korteweg–de Vries equation is determined. The obtained results make it possible to apply the inverse problem method to solve the loaded negative order Korteweg–de Vries equation in the class of rapidly decreasing functions. An example of the given problem is given with graphs of the solution.
Keywords: Sturm–Liouville operator, loaded equation, loaded negative order Korteweg–de Vries equation, soliton solution, inverse scattering problems.
@article{CHEB_2024_25_2_a9,
     author = {G. U. Urazboev and I. I. Baltaeva and O. B. Ismoilov},
     title = {Scattering theory for the loaded negative order {Korteweg--de} {Vries} equation},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {169--180},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a9/}
}
TY  - JOUR
AU  - G. U. Urazboev
AU  - I. I. Baltaeva
AU  - O. B. Ismoilov
TI  - Scattering theory for the loaded negative order Korteweg--de Vries equation
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 169
EP  - 180
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a9/
LA  - en
ID  - CHEB_2024_25_2_a9
ER  - 
%0 Journal Article
%A G. U. Urazboev
%A I. I. Baltaeva
%A O. B. Ismoilov
%T Scattering theory for the loaded negative order Korteweg--de Vries equation
%J Čebyševskij sbornik
%D 2024
%P 169-180
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a9/
%G en
%F CHEB_2024_25_2_a9
G. U. Urazboev; I. I. Baltaeva; O. B. Ismoilov. Scattering theory for the loaded negative order Korteweg--de Vries equation. Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 169-180. http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a9/