Asymptotic formula in the Waring's problem with almost proportional summands
Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 139-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

For $n \geq 3$, an asymptotic formula is derived for the number of representations of a sufficiently large natural number $N$ as a sum of $r = 2^n + 1$ summands, each of which is an $n$-th power of natural numbers $x_i$, $i = \overline{1, r}$, satisfying the conditions $$ |x_i^n-\mu_iN|\le H, H\ge N^{1-\theta(n,r)+\varepsilon}, \theta(n,r)=\frac2{(r+1)(n^2-n)}, $$ where $\mu_1, \ldots, \mu_r$ are positive fixed numbers, and $\mu_1 + \ldots + \mu_n = 1$. This result strengthens the theorem of E.M. Wright.
Keywords: Waring problem, almost proportional summands, short exponential sum of G. Weyl, small neighborhood of centers of major arcs.
@article{CHEB_2024_25_2_a8,
     author = {Z. Kh. Rakhmonov and F. Z. Rahmonov},
     title = {Asymptotic formula in the {Waring's} problem with almost proportional summands},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {139--168},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a8/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
AU  - F. Z. Rahmonov
TI  - Asymptotic formula in the Waring's problem with almost proportional summands
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 139
EP  - 168
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a8/
LA  - ru
ID  - CHEB_2024_25_2_a8
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%A F. Z. Rahmonov
%T Asymptotic formula in the Waring's problem with almost proportional summands
%J Čebyševskij sbornik
%D 2024
%P 139-168
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a8/
%G ru
%F CHEB_2024_25_2_a8
Z. Kh. Rakhmonov; F. Z. Rahmonov. Asymptotic formula in the Waring's problem with almost proportional summands. Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 139-168. http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a8/

[1] Wright E. M., “Proportionality conditions in Waring's problem”, Mathematische Zeitschrift, 38 (1934), 730–746 | DOI | MR | Zbl

[2] Wright E. M., “An extension of Waring's problem”, Philos. Trans. R. Soc. Lond. Ser. A, 232 (1933), 1–26 | DOI | Zbl

[3] Dirk Daemen, “The asymptotic formula for localized solutions in Waring's problem and approximations to Weyl sums”, Bull. London Math. Soc., 42 (2010), 75–82 | DOI | MR | Zbl

[4] Dirk Daemen, “Localized solutions in Waring's problem: the lower bound”, Acta Arithmetica, 142:2 (2010), 129–143 | DOI | MR | Zbl

[5] Dirk Daemen, “On sums of 13 ‘almost equal’ cubes”, Quart. J. Math., 61 (2010), 29–32 | DOI | MR | Zbl

[6] Rakhmonov, Z. Kh., “The Estermann cubic problem with almost equal summands”, Mathematical Notes, 95:3-4 (2014), 407–417 | DOI | DOI | MR | MR | Zbl

[7] Rakhmonov Z. Kh., Nazrubloev N. N., Rakhimov A.O., “Short Weyl sums and their applications”, Chebyshevskii Sbornik, 16:1 (2015), 232–247 (in Russian) | MR | Zbl

[8] Rakhmonov Z. Kh., Azamov A.Z., Nazrubloev N. N., “Of short Weyl's exponential sum in minor arcs”, Doklady Akademii nauk Respubliki Tajikistan, 61:7-8 (2018), 609–614 (in Russian)

[9] Rakhmonov Z. Kh., Mirzoabdugafurov K. I., “Waring's problem for cubes with almost equal summands”, Doklady Akademii nauk Respubliki Tajikistan, 51:2 (2008), 83–86 (in Russian)

[10] Rakhmonov Z. Kh., Azamov A.Z., “An asymptotic formula in Waring's problem for fourth powers with almost equal summands”, Doklady Akademii nauk Respubliki Tajikistan, 54:3 (2011), 34–42 (in Russian) | MR

[11] Rakhmonov Z. Kh., Nazrubloev N. N., “Waring's problem for fifth powers with almost equal summands”, Doklady Akademii nauk Respubliki Tajikistan, 57:11-12 (2014), 823–830 (in Russian)

[12] Rakhmonov Z. Kh., 2003, “Estermann's ternary problem with almost equal summands”, Mathematical Notes, 74:4, 534–542 | DOI | DOI | MR | Zbl

[13] Rakhmonov F. Z., Rakhimov A. O., “On an additive problem with almost equal summands”, Issledovaniya po algebre, teorii chisel, funktsional'nomu analizu i smezhnym voprosam, 2015, no. 8, 87–89 (in Russian)

[14] Rakhmonov Z. Kh., “Generalization of Waring's problem for nine almost proportional cubes”, Chebyshevskii Sbornik, 24:3 (2023), 71–94 (in Russian) | MR | Zbl

[15] Vaughan R. C., “Some remarks onWeyl sums”, Topics in Classical Number Theory, Colloquia Math. Soc. Janos Bolyai, 34, 1981, 1585–1602 | MR

[16] Karatsuba A. A., Korolev M. A., “A theorem on the approximation of a trigonometric sum by a shorter one”, Izvestiya: Mathematics, 71:2 (2007), 341–370 | DOI | MR | Zbl

[17] Vaughan R. C., The Hardy-Littlewood method, Cambridge Tracts in Mathematics, 80, Cambridge University Press, Cambridge, 1981, 172 pp. | MR | MR | Zbl

[18] “Abschätzungen von Exponentialsummen und ihre Anwendung in der Zahlentheorie. 2. völlig neu bearb. Auf”, 2 Teil, Heft 13, v. I, Enzyklopädie Math. Wiss., B. G. Teubner Verlag, Leipzig, 1959, 29, 123 pp. | MR

[19] Arkhipov G. I., Chubarikov V. N., Karatsuba A. A., Trigonometric sums in number theory and analysis, Walter de Gruyter, Berlin-New-York, 2004, 554 pp. | MR | MR | Zbl

[20] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, Perev. s angl., v. 1, Osnovnye operatsii analiza, Izd. 2-e, Fizmatgiz, M., 1963, 342 pp. [Whittaker G. E., Watson T. N., A Course of Modern Analysis, v. 1, The processes of analysis, 1915]; v. 2, The transcendental functions, Cambridge University Press, Cambridge, 620 pp.