Asymptotic formula in the Waring's problem with almost proportional summands
Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 139-168

Voir la notice de l'article provenant de la source Math-Net.Ru

For $n \geq 3$, an asymptotic formula is derived for the number of representations of a sufficiently large natural number $N$ as a sum of $r = 2^n + 1$ summands, each of which is an $n$-th power of natural numbers $x_i$, $i = \overline{1, r}$, satisfying the conditions $$ |x_i^n-\mu_iN|\le H, H\ge N^{1-\theta(n,r)+\varepsilon}, \theta(n,r)=\frac2{(r+1)(n^2-n)}, $$ where $\mu_1, \ldots, \mu_r$ are positive fixed numbers, and $\mu_1 + \ldots + \mu_n = 1$. This result strengthens the theorem of E.M. Wright.
Keywords: Waring problem, almost proportional summands, short exponential sum of G. Weyl, small neighborhood of centers of major arcs.
@article{CHEB_2024_25_2_a8,
     author = {Z. Kh. Rakhmonov and F. Z. Rahmonov},
     title = {Asymptotic formula in the {Waring's} problem with almost proportional summands},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {139--168},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a8/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
AU  - F. Z. Rahmonov
TI  - Asymptotic formula in the Waring's problem with almost proportional summands
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 139
EP  - 168
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a8/
LA  - ru
ID  - CHEB_2024_25_2_a8
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%A F. Z. Rahmonov
%T Asymptotic formula in the Waring's problem with almost proportional summands
%J Čebyševskij sbornik
%D 2024
%P 139-168
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a8/
%G ru
%F CHEB_2024_25_2_a8
Z. Kh. Rakhmonov; F. Z. Rahmonov. Asymptotic formula in the Waring's problem with almost proportional summands. Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 139-168. http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a8/