Sound radiation of a cylinder streamlined by a stationary flow of an ideal liquid
Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 350-358.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article the problem of the acoustic radiation of a cylinder streamlined by a stationary flow of an ideal liquid is considered. It is assumed that the velocity of the incoming flow is significantly lower than the speed of sound. The surface of the spheroid makes harmonic vibrations. An approximate analytical solution of the problem was obtained with using the speed potential of the oncoming on the body flow and the speed potential of the stationary radiator acoustic field. Special cases of sound radiation by a cylinder are considered. The results of numerical calculations of polar diagrams of the acoustic pressure distribution on the surface of a spheroid at different values of the ratio of the flow velocity to the speed of sound and the wave size of the cylinder are presented.
Keywords: acoustic radiation, cylinder, ideal fluid, potential flow.
@article{CHEB_2024_25_2_a22,
     author = {L. A. Tolokonnikov and S. L. Tolokonnikov},
     title = {Sound radiation of a cylinder streamlined by a stationary flow of an ideal liquid},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {350--358},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a22/}
}
TY  - JOUR
AU  - L. A. Tolokonnikov
AU  - S. L. Tolokonnikov
TI  - Sound radiation of a cylinder streamlined by a stationary flow of an ideal liquid
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 350
EP  - 358
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a22/
LA  - ru
ID  - CHEB_2024_25_2_a22
ER  - 
%0 Journal Article
%A L. A. Tolokonnikov
%A S. L. Tolokonnikov
%T Sound radiation of a cylinder streamlined by a stationary flow of an ideal liquid
%J Čebyševskij sbornik
%D 2024
%P 350-358
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a22/
%G ru
%F CHEB_2024_25_2_a22
L. A. Tolokonnikov; S. L. Tolokonnikov. Sound radiation of a cylinder streamlined by a stationary flow of an ideal liquid. Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 350-358. http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a22/

[1] Rzhevkin, S., A course of lectures on the theory of sound, Publishing House of Moscow State Univer., M., 1960, 336 pp. (in Russian)

[2] Shenderov, E. L., Wave problems of underwater acoustics, Sudostroenie, L., 1972, 352 pp. (in Russian)

[3] Skudrzyk, E., The foundations of acoustics, Springer-Verlag, New York, 1971, 816 pp. | MR | Zbl

[4] Tzoi, P. I. 1966, “Radiation of a cylinder in a viscous medium”, Izv. AN USSR. Mechanics of liquid and gas, no. 5, 82–92 (in Russian)

[5] Kozhin, V. N., “Radiation arid scattering of sound by a cylinder in a viscous medium”, Akust. Zhurn., 16:2 (1970), 269–274 (in Russian)

[6] Copley L. G., “Integral equation method for radiation from vibrating bodies”, J. Acoust. Soc. Amer., 41-1:4 (1967), 807–816 | DOI

[7] Schenck H. A., “Improved integral formulation for acoustic radiation problems”, J. Acoust. Soc. Amer., 44:1 (1968), 41–58 | DOI

[8] Fenlon F. H., “Calculation of the acoustic radiation field of the surface of a finite cylinder by the method of final residuals”, Proc. IEEE, 57:3 (1969), 291–306 | DOI

[9] Vovk, I. V., Grinchenko, V. T., Kotsuba, V. S., “On one method of evaluation of acoustic properties of cylindrical radiator of a finite height”, Akust. Zhurn., 21:5 (1975), 701–705 (in Russian)

[10] Sandman V. E., “Fluid-loading influence coofficionls for a finites cylindrical shell”, J. Acoust, Soc. Amer., 60:6 (1976), 1256–1264 | DOI

[11] Kozirev, V. A., Shenderov, E. L., “On radiation resistance of cylinder of finite height”, Akust. Zhurn., 26:3 (1980), 422–432 (in Russian)

[12] Blohintsev, D. I., Acoustics of an inhomogeneous moving medium, Nauka, M., 1981, 208 pp. (in Russian)

[13] Kochin, N. E., Kibel, I. A., Roze, N., Theoretical hydromechanics, Fizmatgiz, M., 1963, 584 pp. (in Russian)

[14] Abramowitz, M., Stegun, I. A., Handbook of Mathematical Functions, Dover Publications, Inc, New York, 1965, 1046 pp. | MR