Dirichlet series of the second kind for irreducible lattices repeated by multiplication
Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 260-268.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work constructs a theory of Dirichlet series of the second kind for irreducible lattices repeated by multiplication. In particular, the theorem is proven that Dirichlet series of the second kind for irreducible lattices repeated by multiplication form an algebra over the field of complex numbers. In conclusion, current problems for Dirichlet series of the second kind for irreducible lattices repeated by multiplication are considered, requiring further research.
Keywords: riemann zeta function, dirichlet series.
@article{CHEB_2024_25_2_a16,
     author = {R. V. Tarabrin and N. N. Dobrovol'skii and N. M. Dobrovol'skii},
     title = {Dirichlet series of the second kind for irreducible lattices repeated by multiplication},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {260--268},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a16/}
}
TY  - JOUR
AU  - R. V. Tarabrin
AU  - N. N. Dobrovol'skii
AU  - N. M. Dobrovol'skii
TI  - Dirichlet series of the second kind for irreducible lattices repeated by multiplication
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 260
EP  - 268
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a16/
LA  - ru
ID  - CHEB_2024_25_2_a16
ER  - 
%0 Journal Article
%A R. V. Tarabrin
%A N. N. Dobrovol'skii
%A N. M. Dobrovol'skii
%T Dirichlet series of the second kind for irreducible lattices repeated by multiplication
%J Čebyševskij sbornik
%D 2024
%P 260-268
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a16/
%G ru
%F CHEB_2024_25_2_a16
R. V. Tarabrin; N. N. Dobrovol'skii; N. M. Dobrovol'skii. Dirichlet series of the second kind for irreducible lattices repeated by multiplication. Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 260-268. http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a16/

[1] Bernstein D., Gelbart S., Introduction to the Langpends Program, 2008

[2] Hecke E., Lectures on the theory of algebraic numbers, Gostekhizdat, M.–L., 1940

[3] Delone, B. N., Faddeev, D. K. 1940, “The theory of irrationalities of the third degree”, Tr. Math. V. A. Steklov Institute, 11, Publishing House of the USSR Academy of Sciences, M.–L., 3–340

[4] Dobrovol'skaya, L. P., Dobrovol'skii, M. N., Dobrovol'skii, N. M., Dobrovol'skii, N. N., “The hyperbolic Zeta function of grids and lattices, and calculation of optimal coefficients”, Chebyshevskii sbornik, 13:4(44) (2012), 4–107 | Zbl

[5] Dobrovol'skii, N. N., “On two asymptotic formulas in the theory of hyperbolic Zeta function of lattices”, Chebyshevskii sbornik, 19:3 (2018), 109–134 | DOI | Zbl

[6] Dobrovol'skii, N. N., Dobrovol'skii, M. N., Dobrovol'skii, N. M., Balaba, I. N., Rebrova, I. Yu., “Dirichlet series algebra of a monoid of natural numbers”, Chebyshevskii sbornik, 20:1 (2019), 180–196 | MR | Zbl