Continuity of Dirichlet series of $s$-dimensional lattices
Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 251-259.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, Dirichlet series of $s$-dimensional lattices are studied. In particular, the theorem is proved that the Dirichlet series of $s$-dimensional lattices are continuous on the space of lattices in the region of their absolute convergence. In conclusion, current problems for Dirichlet series of $s$-dimensional lattices that require further research are considered.
Keywords: Riemann zeta function, Dirichlet series, hyperbolic lattice zeta function.
@article{CHEB_2024_25_2_a15,
     author = {{\CYRR}. V. Tarabrin and N. N. Dobrovol'skii and I. Yu. Rebrova and N. M. Dobrovol'skii},
     title = {Continuity of {Dirichlet} series of $s$-dimensional lattices},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {251--259},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a15/}
}
TY  - JOUR
AU  - Р. V. Tarabrin
AU  - N. N. Dobrovol'skii
AU  - I. Yu. Rebrova
AU  - N. M. Dobrovol'skii
TI  - Continuity of Dirichlet series of $s$-dimensional lattices
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 251
EP  - 259
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a15/
LA  - ru
ID  - CHEB_2024_25_2_a15
ER  - 
%0 Journal Article
%A Р. V. Tarabrin
%A N. N. Dobrovol'skii
%A I. Yu. Rebrova
%A N. M. Dobrovol'skii
%T Continuity of Dirichlet series of $s$-dimensional lattices
%J Čebyševskij sbornik
%D 2024
%P 251-259
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a15/
%G ru
%F CHEB_2024_25_2_a15
Р. V. Tarabrin; N. N. Dobrovol'skii; I. Yu. Rebrova; N. M. Dobrovol'skii. Continuity of Dirichlet series of $s$-dimensional lattices. Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 251-259. http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a15/

[1] Dobrovol'skii, N. M., Rebrova, I. Yu., Roshhenya, A. L., “Continuity of the hyperbolic Zeta function of lattices”, Matematicheskie zametki, 63:4 (1998), 522–526 | DOI | MR | Zbl

[2] Dobrovol'skii, N. M., Roshhenya, A. L., “On the number of lattice points in a hyperbolic cross”, Matematicheskie zametki, 63:4 (1998), 363–369 | DOI | MR | Zbl

[3] Cassels J., Introduction to the geometry of numbers, Mir, M., 1965

[4] Chandrasekharan K., Vvedenie v analiticheskuju teoriju chisel, Izd-vo Mir, M., 1974, 188 pp.

[5] Chudakov N. G., Introduction to the theory of $L$-Dirichlet functions, OGIZ, M.–L., 1947, 204 pp. | MR