Continuity of Dirichlet series of $s$-dimensional lattices
Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 251-259
Cet article a éte moissonné depuis la source Math-Net.Ru
In this work, Dirichlet series of $s$-dimensional lattices are studied. In particular, the theorem is proved that the Dirichlet series of $s$-dimensional lattices are continuous on the space of lattices in the region of their absolute convergence. In conclusion, current problems for Dirichlet series of $s$-dimensional lattices that require further research are considered.
Keywords:
Riemann zeta function, Dirichlet series, hyperbolic lattice zeta function.
@article{CHEB_2024_25_2_a15,
author = {{\CYRR}. V. Tarabrin and N. N. Dobrovol'skii and I. Yu. Rebrova and N. M. Dobrovol'skii},
title = {Continuity of {Dirichlet} series of $s$-dimensional lattices},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {251--259},
year = {2024},
volume = {25},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a15/}
}
TY - JOUR AU - Р. V. Tarabrin AU - N. N. Dobrovol'skii AU - I. Yu. Rebrova AU - N. M. Dobrovol'skii TI - Continuity of Dirichlet series of $s$-dimensional lattices JO - Čebyševskij sbornik PY - 2024 SP - 251 EP - 259 VL - 25 IS - 2 UR - http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a15/ LA - ru ID - CHEB_2024_25_2_a15 ER -
Р. V. Tarabrin; N. N. Dobrovol'skii; I. Yu. Rebrova; N. M. Dobrovol'skii. Continuity of Dirichlet series of $s$-dimensional lattices. Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 251-259. http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a15/
[1] Dobrovol'skii, N. M., Rebrova, I. Yu., Roshhenya, A. L., “Continuity of the hyperbolic Zeta function of lattices”, Matematicheskie zametki, 63:4 (1998), 522–526 | DOI | MR | Zbl
[2] Dobrovol'skii, N. M., Roshhenya, A. L., “On the number of lattice points in a hyperbolic cross”, Matematicheskie zametki, 63:4 (1998), 363–369 | DOI | MR | Zbl
[3] Cassels J., Introduction to the geometry of numbers, Mir, M., 1965
[4] Chandrasekharan K., Vvedenie v analiticheskuju teoriju chisel, Izd-vo Mir, M., 1974, 188 pp.
[5] Chudakov N. G., Introduction to the theory of $L$-Dirichlet functions, OGIZ, M.–L., 1947, 204 pp. | MR