Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2024_25_2_a13, author = {A. I. Denisov and I. V. Denisov}, title = {The support barrier functions for nonlinear parabolic problems}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {235--242}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a13/} }
A. I. Denisov; I. V. Denisov. The support barrier functions for nonlinear parabolic problems. Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 235-242. http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a13/
[1] Vasilyeva, A. B., Butuzov, V. F., Asymptotic methods in the theory of singular perturbations, Higher school, M., 1990 | MR
[2] Denisov A.I., Denisov I.V., “Nonlinear method of angular boundary functions for singularly perturbed parabolic problems with cubic nonlinearities”, Chebyshevskii Sbornik, 25:1 (2024), 25–40
[3] Amann H., “On the Existence of Positive Solutions of Nonlinear Elliptic Boundary Value Problems”, Indiana Univ. Math. J., 21:2 (1971), 125–146 | DOI | MR
[4] Sattinger D.H., “Monotone Methods in Nonlinear Elliptic and Parabolic Boundary Value Problems”, Indiana Univ. Math. J., 21:11 (1972), 979–1000 | DOI | MR | Zbl
[5] Amann H., Nonlinear Analysis: coll. of papers in honor of E.H. Rothe, eds. L. Cesari et al., Acad press, cop, New York etc, 1978, 1–29 | MR
[6] Denisov I.V., “On the asymptotic expansion of the solution of a singularly perturbed elliptic equation in a rectangle”, Asymptotic methods of the theory of singularly perturbed equations and ill-posed problems, Collection of articles. scientific. tr., Ilim, Bishkek, 1991, 37
[7] Denisov I.V., “Quasilinear Singularly Perturbed Elliptic Equations in a Rectangle”, Computational Mathematics and Mathematical Physics, 35:11 (1995), 1341–1350 | MR | Zbl