The support barrier functions for nonlinear parabolic problems
Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 235-242.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the framework of the nonlinear method of angular boundary functions, the existence of solutions to nonlinear boundary value problems is proven through the construction of barrier functions. Barrier functions are constructed through specially designated support barriers. The support barriers themselves can also act as barrier functions. The resulting inequalities, in turn, are of independent functional interest.
Keywords: nonlinear boundary value problems, barrier functions, functional inequalities.
@article{CHEB_2024_25_2_a13,
     author = {A. I. Denisov and I. V. Denisov},
     title = {The support barrier functions for nonlinear parabolic problems},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {235--242},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a13/}
}
TY  - JOUR
AU  - A. I. Denisov
AU  - I. V. Denisov
TI  - The support barrier functions for nonlinear parabolic problems
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 235
EP  - 242
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a13/
LA  - ru
ID  - CHEB_2024_25_2_a13
ER  - 
%0 Journal Article
%A A. I. Denisov
%A I. V. Denisov
%T The support barrier functions for nonlinear parabolic problems
%J Čebyševskij sbornik
%D 2024
%P 235-242
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a13/
%G ru
%F CHEB_2024_25_2_a13
A. I. Denisov; I. V. Denisov. The support barrier functions for nonlinear parabolic problems. Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 235-242. http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a13/

[1] Vasilyeva, A. B., Butuzov, V. F., Asymptotic methods in the theory of singular perturbations, Higher school, M., 1990 | MR

[2] Denisov A.I., Denisov I.V., “Nonlinear method of angular boundary functions for singularly perturbed parabolic problems with cubic nonlinearities”, Chebyshevskii Sbornik, 25:1 (2024), 25–40

[3] Amann H., “On the Existence of Positive Solutions of Nonlinear Elliptic Boundary Value Problems”, Indiana Univ. Math. J., 21:2 (1971), 125–146 | DOI | MR

[4] Sattinger D.H., “Monotone Methods in Nonlinear Elliptic and Parabolic Boundary Value Problems”, Indiana Univ. Math. J., 21:11 (1972), 979–1000 | DOI | MR | Zbl

[5] Amann H., Nonlinear Analysis: coll. of papers in honor of E.H. Rothe, eds. L. Cesari et al., Acad press, cop, New York etc, 1978, 1–29 | MR

[6] Denisov I.V., “On the asymptotic expansion of the solution of a singularly perturbed elliptic equation in a rectangle”, Asymptotic methods of the theory of singularly perturbed equations and ill-posed problems, Collection of articles. scientific. tr., Ilim, Bishkek, 1991, 37

[7] Denisov I.V., “Quasilinear Singularly Perturbed Elliptic Equations in a Rectangle”, Computational Mathematics and Mathematical Physics, 35:11 (1995), 1341–1350 | MR | Zbl