On Hua Loo-Keng's estimates of exponential sums in algebraic number fields
Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 181-207.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper provides a generalization of the Hua Loo-Keng estimation method of rational trigonometric sums with a polynomial in exponent in algebraic number fields, which are extensions of the field of rational numbers. In the ring of integers of this algebraic number field we consider integer and fractional ideals. For a complete system of residues for any integer ideal, Hua Loo-Keng proved an analogue of the Euler–Fourier formula, which, using results regarding the multiplicity of roots of a polynomial congruence modulo a prime ideal (“Hua Loo-Keng trees”), allows the problem to be reduced to the p-adic lifting of solutions, and this allows us to reduce the problem of estimating the sum to estimating the number of solutions of polynomial congruences modulo a power of a prime ideal. Furthermore, building upon Chen Jingrun's estimates in the field of rational numbers, we obtain improved constants for similar estimates in algebraic numeric fields.
Keywords: hua Loo-Keng's Estimate, hua Loo-Keng Trees, exponential sums, algebraic number fields.
@article{CHEB_2024_25_2_a10,
     author = {H. Al-Assad},
     title = {On {Hua} {Loo-Keng's} estimates of exponential sums in algebraic number fields},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {181--207},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a10/}
}
TY  - JOUR
AU  - H. Al-Assad
TI  - On Hua Loo-Keng's estimates of exponential sums in algebraic number fields
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 181
EP  - 207
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a10/
LA  - ru
ID  - CHEB_2024_25_2_a10
ER  - 
%0 Journal Article
%A H. Al-Assad
%T On Hua Loo-Keng's estimates of exponential sums in algebraic number fields
%J Čebyševskij sbornik
%D 2024
%P 181-207
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a10/
%G ru
%F CHEB_2024_25_2_a10
H. Al-Assad. On Hua Loo-Keng's estimates of exponential sums in algebraic number fields. Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 181-207. http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a10/

[1] Chubarikov, V. N., “On multiple rational trigonometric sums over a field of algebraic numbers”, Chebyshevskii Sbornik, 22:4 (2021), 306–323 | DOI | MR | Zbl

[2] Hua L-K., “On Exponential Sums Over an Algebraic Number Field”, Canadian Journal of Mathematics, 3 (1951), 44–51 | DOI | MR | Zbl

[3] Hua L-K., “On the number of solutions of Tarry's problem”, Acta Sci. Sinica, 1 (1952), 1–76 | MR

[4] Hua, L-K., “On An Exponential Sum”, Journal of the London Mathematical Society, 1938, no. s1-13, 54–61 | DOI | MR | Zbl

[5] Arkhipov, G. I., Karatsuba, A. A., Chubarikov, V. N., Theory of multiple trigonometric sums, Nauka. Fizmatlit, M., 1987 | MR

[6] Wang Yuan, Diophantine Equations and Inequalities in Algebraic Number Fields, Springer Verlag, Berlin–Heidelberg, 1991 | MR | Zbl

[7] Anthony Knapp, Advanced Algebra, Birkhäuser, Boston, 2006 | MR | Zbl

[8] Anthony Knapp, Basic Algebra, Birkhäuser, Boston, 2006 | MR | Zbl

[9] Weil, A., “On Some Exponential Sums”, Proceedings of the National Academy of Sciences of the United States of America, 34:5 (1948), 204–207 http://www.jstor.org/stable/88420 | DOI | MR | Zbl

[10] Chubarikov, V. N., “Hua Lo-ken trees in the theory of comparisons”, Mathematical issues of cybernetics, 16, FIZMATLIT, M., 2007, 73–78

[11] Chen Jingrun, “On Professor Hua's Estimate of Exponential Sums”, Scientia Sinica, 20:6 (1977), 711–719 | MR | Zbl

[12] Chen Jingrun, “On the representation of natural number as a sum of terms of the form $\frac{x(x + 1)\cdots(x + k - 1)}{k!}$”, Acta Mathematica Sinica, 1959, 264–270 | MR | Zbl

[13] Nechaev V.I., “An estimate of the complete rational trigonometric sum”, Math. Notes, 17:6 (1975), 504–511 | DOI | MR | Zbl

[14] Qi Minggao, Ding Ping, “On Estimate of complete trigonometric sums”, China Ann. Math. B, 6 (1985), 109–120 | MR | Zbl

[15] Mordell, L. J., “On a sum analogous to a Gauss's sum, Quart”, J. Math., (Oxford), 3 (1932), 161–167 | DOI | Zbl