Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2024_25_2_a10, author = {H. Al-Assad}, title = {On {Hua} {Loo-Keng's} estimates of exponential sums in algebraic number fields}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {181--207}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a10/} }
H. Al-Assad. On Hua Loo-Keng's estimates of exponential sums in algebraic number fields. Čebyševskij sbornik, Tome 25 (2024) no. 2, pp. 181-207. http://geodesic.mathdoc.fr/item/CHEB_2024_25_2_a10/
[1] Chubarikov, V. N., “On multiple rational trigonometric sums over a field of algebraic numbers”, Chebyshevskii Sbornik, 22:4 (2021), 306–323 | DOI | MR | Zbl
[2] Hua L-K., “On Exponential Sums Over an Algebraic Number Field”, Canadian Journal of Mathematics, 3 (1951), 44–51 | DOI | MR | Zbl
[3] Hua L-K., “On the number of solutions of Tarry's problem”, Acta Sci. Sinica, 1 (1952), 1–76 | MR
[4] Hua, L-K., “On An Exponential Sum”, Journal of the London Mathematical Society, 1938, no. s1-13, 54–61 | DOI | MR | Zbl
[5] Arkhipov, G. I., Karatsuba, A. A., Chubarikov, V. N., Theory of multiple trigonometric sums, Nauka. Fizmatlit, M., 1987 | MR
[6] Wang Yuan, Diophantine Equations and Inequalities in Algebraic Number Fields, Springer Verlag, Berlin–Heidelberg, 1991 | MR | Zbl
[7] Anthony Knapp, Advanced Algebra, Birkhäuser, Boston, 2006 | MR | Zbl
[8] Anthony Knapp, Basic Algebra, Birkhäuser, Boston, 2006 | MR | Zbl
[9] Weil, A., “On Some Exponential Sums”, Proceedings of the National Academy of Sciences of the United States of America, 34:5 (1948), 204–207 http://www.jstor.org/stable/88420 | DOI | MR | Zbl
[10] Chubarikov, V. N., “Hua Lo-ken trees in the theory of comparisons”, Mathematical issues of cybernetics, 16, FIZMATLIT, M., 2007, 73–78
[11] Chen Jingrun, “On Professor Hua's Estimate of Exponential Sums”, Scientia Sinica, 20:6 (1977), 711–719 | MR | Zbl
[12] Chen Jingrun, “On the representation of natural number as a sum of terms of the form $\frac{x(x + 1)\cdots(x + k - 1)}{k!}$”, Acta Mathematica Sinica, 1959, 264–270 | MR | Zbl
[13] Nechaev V.I., “An estimate of the complete rational trigonometric sum”, Math. Notes, 17:6 (1975), 504–511 | DOI | MR | Zbl
[14] Qi Minggao, Ding Ping, “On Estimate of complete trigonometric sums”, China Ann. Math. B, 6 (1985), 109–120 | MR | Zbl
[15] Mordell, L. J., “On a sum analogous to a Gauss's sum, Quart”, J. Math., (Oxford), 3 (1932), 161–167 | DOI | Zbl