On estimates for trigonometric integrals with quadratic phase
Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 52-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the summation problem for trigonometric integrals with quadratic phase. The particular cases of this problem were considered in [2], [3], [4]. We generalize the results of these papers to the multidimensional exponential integrals.
Keywords: trigonometrical integral, exponent, sums, phase, polynomial.
@article{CHEB_2024_25_1_a4,
     author = {I. A. Ikromov and A. R. Safarov and A. T. Absalamov},
     title = {On estimates for trigonometric integrals with quadratic phase},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {52--61},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a4/}
}
TY  - JOUR
AU  - I. A. Ikromov
AU  - A. R. Safarov
AU  - A. T. Absalamov
TI  - On estimates for trigonometric integrals with quadratic phase
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 52
EP  - 61
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a4/
LA  - ru
ID  - CHEB_2024_25_1_a4
ER  - 
%0 Journal Article
%A I. A. Ikromov
%A A. R. Safarov
%A A. T. Absalamov
%T On estimates for trigonometric integrals with quadratic phase
%J Čebyševskij sbornik
%D 2024
%P 52-61
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a4/
%G ru
%F CHEB_2024_25_1_a4
I. A. Ikromov; A. R. Safarov; A. T. Absalamov. On estimates for trigonometric integrals with quadratic phase. Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 52-61. http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a4/

[1] Arkhipov, G. I., Karatsuba, A.A., Chubarikov, V.N., Theory of multiple trigonometric sums, Nauka, M., 1987, 357 pp. | MR

[2] Arkhipov, L. G., Chubarikov, V.N., “On the exponents of the convergence of singular integrals and singular series of a multivariate problem”, Chebyshevskiy sbornik, 20:4 (2019), 46–57 | Zbl

[3] Chahkiev, M. A., “Estimation of the convergence index of a singular integral Terry problems for a homogeneous polynomial degree n of two variables”, LXI International Scientific Readings (in memory of A.N.Kolmogorov) International Scientific and Practical Conference (December 16, 2019), 2019, 18–21

[4] Jabbarov, I. Sh., “Exponent of a special integral in the two-dimensional Tarry problem with homogeneous of degree 2”, Mathematical Notes, 105:3 (2019), 375–382 | DOI | MR | Zbl

[5] Hua, Loo-keng, “On the number of solutions of Tarry's problem”, Acta Sci. Sinica, 1:1 (1952), 1–76 | MR

[6] Ikromov, I. A., “On the convergence exponent of trigonometric integrals”, Proceedings MIRAN, 218 (1997), 179–189 | MR | Zbl

[7] Safarov, A., “On the $L^p$-bound for trigonometric integrals”, Analysis mathematica, 45 (2019), 153–176 | DOI | MR | Zbl

[8] Safarov, A., “About summation of oscillatory integrals with homogeneous polynomial of third degree”, Uzbek Mathematical journal, 2015, no. 4, 108–117

[9] Safarov, A., “Invariant estimates of two-dimensional oscillatory integrals”, Math. Notes, 104 (2018), 293–302 | DOI | MR | Zbl

[10] Safarov, A., “On invariant estimates for oscillatory integrals with polynomial phase”, J. Sib. Fed. Univ. Math. Phys., 9 (2016), 102–107 | DOI | MR | Zbl

[11] Safarov, A., “On a problem of restriction of Fourier transform on a hypersurface”, Russian Mathematics, 63:4 (2019), 57–63 | DOI | MR | Zbl

[12] Safarov, A. R., “Estimates for Mittag–Leffler functions with smooth phase depending on twovariables”, J. Sib. Fed. Univ. Math. Phys., 15:4 (2022), 459–466 | MR

[13] Makenhaupt, G., Bounds in Lebesgue Spaces of Oscillatory Integral Operators, Habilitationsschift zur Erlangung der Lehrbefugnis im Fach Matematik der Gesamthochschule, Siegen, 1996

[14] Stein, E. M., Harmonic Analysis: real-valued methods, orthogonality and Oscillatory Integrals, Princeton, 1993 | MR

[15] Vinogradov, I. M., Method trigonometric sums in number theory, Nauka, M., 1980, 158 pp. | MR

[16] Jong-Guk, Bak, Sanghyuk, Lee, “Restriction of the Fourier transform to a quadratic surface in $\mathbb{R}^{n}$”, Mathematische Zeitschrift, 2004, no. 247, 409–422 | MR | Zbl

[17] Lebedev, V. V., “On the Fourier transform of the characteristic functions of domains with $C^{1}$ boundary”, Func. anal. and its appl., 47:1 (2013), 33–46 | DOI | Zbl

[18] Lebedev, V. V., Superposition operators in some spaces of the harmonic analyzer the translator, Dissertation to take The dissertation on competition of a scientific degree of physical and mathematical sciences, 2013