Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2024_25_1_a4, author = {I. A. Ikromov and A. R. Safarov and A. T. Absalamov}, title = {On estimates for trigonometric integrals with quadratic phase}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {52--61}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a4/} }
TY - JOUR AU - I. A. Ikromov AU - A. R. Safarov AU - A. T. Absalamov TI - On estimates for trigonometric integrals with quadratic phase JO - Čebyševskij sbornik PY - 2024 SP - 52 EP - 61 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a4/ LA - ru ID - CHEB_2024_25_1_a4 ER -
I. A. Ikromov; A. R. Safarov; A. T. Absalamov. On estimates for trigonometric integrals with quadratic phase. Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 52-61. http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a4/
[1] Arkhipov, G. I., Karatsuba, A.A., Chubarikov, V.N., Theory of multiple trigonometric sums, Nauka, M., 1987, 357 pp. | MR
[2] Arkhipov, L. G., Chubarikov, V.N., “On the exponents of the convergence of singular integrals and singular series of a multivariate problem”, Chebyshevskiy sbornik, 20:4 (2019), 46–57 | Zbl
[3] Chahkiev, M. A., “Estimation of the convergence index of a singular integral Terry problems for a homogeneous polynomial degree n of two variables”, LXI International Scientific Readings (in memory of A.N.Kolmogorov) International Scientific and Practical Conference (December 16, 2019), 2019, 18–21
[4] Jabbarov, I. Sh., “Exponent of a special integral in the two-dimensional Tarry problem with homogeneous of degree 2”, Mathematical Notes, 105:3 (2019), 375–382 | DOI | MR | Zbl
[5] Hua, Loo-keng, “On the number of solutions of Tarry's problem”, Acta Sci. Sinica, 1:1 (1952), 1–76 | MR
[6] Ikromov, I. A., “On the convergence exponent of trigonometric integrals”, Proceedings MIRAN, 218 (1997), 179–189 | MR | Zbl
[7] Safarov, A., “On the $L^p$-bound for trigonometric integrals”, Analysis mathematica, 45 (2019), 153–176 | DOI | MR | Zbl
[8] Safarov, A., “About summation of oscillatory integrals with homogeneous polynomial of third degree”, Uzbek Mathematical journal, 2015, no. 4, 108–117
[9] Safarov, A., “Invariant estimates of two-dimensional oscillatory integrals”, Math. Notes, 104 (2018), 293–302 | DOI | MR | Zbl
[10] Safarov, A., “On invariant estimates for oscillatory integrals with polynomial phase”, J. Sib. Fed. Univ. Math. Phys., 9 (2016), 102–107 | DOI | MR | Zbl
[11] Safarov, A., “On a problem of restriction of Fourier transform on a hypersurface”, Russian Mathematics, 63:4 (2019), 57–63 | DOI | MR | Zbl
[12] Safarov, A. R., “Estimates for Mittag–Leffler functions with smooth phase depending on twovariables”, J. Sib. Fed. Univ. Math. Phys., 15:4 (2022), 459–466 | MR
[13] Makenhaupt, G., Bounds in Lebesgue Spaces of Oscillatory Integral Operators, Habilitationsschift zur Erlangung der Lehrbefugnis im Fach Matematik der Gesamthochschule, Siegen, 1996
[14] Stein, E. M., Harmonic Analysis: real-valued methods, orthogonality and Oscillatory Integrals, Princeton, 1993 | MR
[15] Vinogradov, I. M., Method trigonometric sums in number theory, Nauka, M., 1980, 158 pp. | MR
[16] Jong-Guk, Bak, Sanghyuk, Lee, “Restriction of the Fourier transform to a quadratic surface in $\mathbb{R}^{n}$”, Mathematische Zeitschrift, 2004, no. 247, 409–422 | MR | Zbl
[17] Lebedev, V. V., “On the Fourier transform of the characteristic functions of domains with $C^{1}$ boundary”, Func. anal. and its appl., 47:1 (2013), 33–46 | DOI | Zbl
[18] Lebedev, V. V., Superposition operators in some spaces of the harmonic analyzer the translator, Dissertation to take The dissertation on competition of a scientific degree of physical and mathematical sciences, 2013