Acoustic radiation of a spheroid streamlined by a stationary flow of an ideal liquid
Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 205-214.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the article the problem of the acoustic radiation of a spheroid streamlined by a stationary flow of an ideal liquid is considered. It is assumed that the velocity of the incoming flow is significantly lower than the speed of sound. Part of the surface of the spheroid makes harmonic vibrations and the rest part is absolutely rigid. The problem is solved in a prolate spheroidal coordinate system. An approximate analytical solution of the problem was obtained with using the speed potential of the oncoming on the body flow and the speed potential of the stationary radiator acoustic field. The results of numerical calculations of polar diagrams of the acoustic pressure distribution on the surface of a spheroid at different values of the ratio of the flow velocity to the speed of sound and different configurations of the spheroid are presented.
Keywords: acoustic radiation, spheroid, ideal fluid, potential flow.
@article{CHEB_2024_25_1_a16,
     author = {L. A. Tolokonnikov and S. L. Tolokonnikov},
     title = {Acoustic radiation of a spheroid streamlined by a stationary flow of an ideal liquid},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {205--214},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a16/}
}
TY  - JOUR
AU  - L. A. Tolokonnikov
AU  - S. L. Tolokonnikov
TI  - Acoustic radiation of a spheroid streamlined by a stationary flow of an ideal liquid
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 205
EP  - 214
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a16/
LA  - ru
ID  - CHEB_2024_25_1_a16
ER  - 
%0 Journal Article
%A L. A. Tolokonnikov
%A S. L. Tolokonnikov
%T Acoustic radiation of a spheroid streamlined by a stationary flow of an ideal liquid
%J Čebyševskij sbornik
%D 2024
%P 205-214
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a16/
%G ru
%F CHEB_2024_25_1_a16
L. A. Tolokonnikov; S. L. Tolokonnikov. Acoustic radiation of a spheroid streamlined by a stationary flow of an ideal liquid. Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 205-214. http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a16/

[1] Chegtock G., “Sound radiation from prolate spheroids”, J. Acoust. Soc. Amer., 33:7 (1961), 871–876 | DOI

[2] Silbiger A., “Radiation from circular pistons of elliptical profile”, J. Acoust. Soc. Amer., 33:11 (1961), 1515–1522 | DOI | MR

[3] Andebura, V. A., “Acoustic properties of spheroidal emitters”, Acoust. journal, 15:4 (1969), 512–522 (in Russian)

[4] Van Buren A. L., “Acoustic radiation impedance of caps and rings on prolate spheroids”, J. Acoust. Soc. Amer., 50:5-2 (1971), 1343–1356

[5] Baier R. V., “Acoustic radiation impedance of caps and rings on oblate spheroidal baffles”, J. Acoust. Soc. Amer., 51:5-2 (1972), 1705–1716 | DOI

[6] Flammer, K., Spheroidal Wave Functions, Stanford University Press, Stanford, 1957, 220 pp. (in Russian) | MR | Zbl

[7] Blohintsev, D. I., Acoustics of an inhomogeneous moving medium, Nauka, M., 1981, 208 pp. (in Russian)

[8] Shenderov, E. L., Wave problems of underwater acoustics, Sudostroenie, L., 1972, 352 pp. (in Russian)

[9] Loystanskii, L.Ġ., Mechanics of fluid and gas, Drofa, M., 2003, 840 pp. (in Russian)

[10] Abramowitz, M., Stegun I. A., Handbook of Mathematical Functions, Dover Publications, Inc, New York, 1965, 1046 pp. | MR

[11] Ivanov, E. A., Diffraction of electromagnetic waves by two bodies, Nauka i tekhnika, Minsk, 1968, 584 pp. (in Russian)

[12] Komarov, I. V., Ponomarev, L. I., Slavyanov, S. Yu., Spheroidal and Coulomb's spheroidal functions, Nauka, M., 1976, 320 pp. (in Russian) | MR