On simultaneous approximations of some hypergeometric functions
Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 184-191.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we propose effective construction of simultaneous approximations for some hypergeometric functions of a special type and their derivatives with respect to parameter. This construction is made use of for the achievement of the lower estimates of numerical linear forms of the values of such functions. Some parameters of these functions can be irrational.
Keywords: hypergeometric functions, effective construction, simultaneous approximations, linear forms.
@article{CHEB_2024_25_1_a14,
     author = {P. L. Ivankov},
     title = {On simultaneous approximations of some hypergeometric functions},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {184--191},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a14/}
}
TY  - JOUR
AU  - P. L. Ivankov
TI  - On simultaneous approximations of some hypergeometric functions
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 184
EP  - 191
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a14/
LA  - ru
ID  - CHEB_2024_25_1_a14
ER  - 
%0 Journal Article
%A P. L. Ivankov
%T On simultaneous approximations of some hypergeometric functions
%J Čebyševskij sbornik
%D 2024
%P 184-191
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a14/
%G ru
%F CHEB_2024_25_1_a14
P. L. Ivankov. On simultaneous approximations of some hypergeometric functions. Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 184-191. http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a14/

[1] Ivankov, P. L., “On the use of joint approximations for studying the arithmetic nature of values of hypergeometric functions”, Science and Education, 12 (2012), 135–143

[2] Ivankov, P. L., “On the use of the theory of divisibility in quadratic fields for obtaining estimates of some linear forms”, Science and Education, 11 (2013), 129–138

[3] Ivankov, P. L., “On differentiation on the parameter of hypergeometric functions of the of special kind”, Izvestiya Vuzov. Mathematics, 12 (2019), 71–81 | Zbl

[4] Shidlovsky, A. B., Transcendental numbers, Nauka, M., 1987

[5] Ivankov, P. L., “On linear independence of values of some functions”, Fundamental and Applied Mathematics, 1:1 (1995), 191–206 | MR | Zbl

[6] Galochkin, A. I., “On arithmetic properties of values of some integer hypergeometric functions”, Siberian Mathematical Journal, 17:6 (1976), 1220–1235 | MR | Zbl

[7] Chudnovsky, D. W., Chudnovsky G.W., “Applications of Pade approximation to diophantine inequalities of G-functions”, Lecture Notes in Math., 1135, 1985, 9–51 | DOI | MR | Zbl

[8] Ivankov, P. L., “On linear independence of values of some hypergeometric functions over an imaginary quadratic field”, Chebyshevskii Sbornik, 20:4 (2020), 155–166 | DOI

[9] Ivankov, P. L., “Efficient construction of joint approximations for hypergeometric functions of special kind”, Algebra, number theory and discrete geometry: modern problems, applications and problems of history, Proceedings of the XVIII International Conference on the 100-th Anniversary of the Birth of Professors B. M. Bredikhin, V. I. Nechaev and S. B. Stechkin (Tula, 2020), 255–256