Elimination of maximal jumps
Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 176-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article continues a series of papers devoted to explicit constructions of Galois extension of complete discrete valuation fields of characteristic $0$ with the residue field of prime characteristic $p$, see [5], [6], [7], [8], [4], [10] and a survey article [9]. It is proved that any $p$-extension of a complete discrete valuation field containing a primitive $p$th root of unity can be embedded into a tower of Artin-Schreier extensions; an estimate for the height of this tower is obtained. This result also shows that such an extension can be embedded into Inaba extension, i. e., an extension obtained by the construction from [2]; an estimate for the order of the corresponding matrix is also obtained. Next, it is proved that any Galois $p$-extension of such field can be decomposed into a tower of Galois extensions of degree $p$ such that several upper levels have the maximal ramification jump whereas the lower ones are Artin-Schreier extensions.
Keywords: discrete valuation field, ramification jump, Artin-Schreier equation.
@article{CHEB_2024_25_1_a13,
     author = {I. B. Zhukov and O. Yu. Ivanova},
     title = {Elimination of maximal jumps},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {176--183},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a13/}
}
TY  - JOUR
AU  - I. B. Zhukov
AU  - O. Yu. Ivanova
TI  - Elimination of maximal jumps
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 176
EP  - 183
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a13/
LA  - ru
ID  - CHEB_2024_25_1_a13
ER  - 
%0 Journal Article
%A I. B. Zhukov
%A O. Yu. Ivanova
%T Elimination of maximal jumps
%J Čebyševskij sbornik
%D 2024
%P 176-183
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a13/
%G ru
%F CHEB_2024_25_1_a13
I. B. Zhukov; O. Yu. Ivanova. Elimination of maximal jumps. Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 176-183. http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a13/

[1] O. Hyodo, “Wild ramification in the imperfect residue field case”, Adv. Stud. Pure Math., 12 (1987), 287–314 | DOI | MR | Zbl

[2] E. Inaba, “On matrix equations for Galois extensions of fields with characteristic p”, Natur. Sci. Rep. Ochanomizu Univ., 12 (1961), 26–36 | MR | Zbl

[3] Fesenko, I. B., Vostokov, S. V., Zhukov I. B., “On the theory of multidimensional local fields. Methods and constructions”, Algebra i Analiz, 2:4 (1990), 91–118 | Zbl

[4] Ivanova, O. Yu., “Construction of a cyclic ferocious extension by means of an Inaba equation”, J. Math. Sci., 513:4 (2022), 74–84 | MR

[5] Vostokov, S. V., Zhukov, I. B., “Some approaches to the construction of abelian extensions for $\mathfrak p$-adic fields”, Proceedings of the St. Petersburg Mathematical Society, III, 1995, 157–174 | MR | Zbl

[6] Vostokov, S. V., Zhukov, I. B., Ivanova, O. Yu., “Inaba extensions of complete fields of characteristic 0”, Chebyshevskii sbornik, 20:3 (2019), 124–133 | DOI | MR | Zbl

[7] Zhukov, I. B., Lysenko, E. F., “Construction of cyclic extensions of degree $p^2$ for a complete field”, J. Math. Sci., 234:2 (2018), 148–157 | DOI | MR | Zbl

[8] Zhukov I. B., Ivanova, O. Yu., “On Inaba extensions for two-dimensional local fields of mixed characteristic”, J. Math. Sci., 513:4 (2022), 57–73 | MR

[9] Zhukov, I. B., Ivanova, O. Yu., “Explicit constructions of extensions of complete fields of characteristic 0”, Chebyshevskii sbornik

[10] Zhukov I., “Explicit abelian extensions of complete discrete valuation fields”, Invitation to Higher Local Fields, Geometry and Topology Monographs, 3, eds. Fesenko, I., Kurihara, M., 2000, 117–122 | DOI | MR | Zbl

[11] R. E. MacKenzie, G. Whaples, “Artin-Schreier equations in characteristic zero”, Amer. J. Math., 78 (1956), 473–485 | DOI | MR | Zbl

[12] Vostokov, S. V., Zhukov, I. B., Pak, G.K., “Extensions with almost maximal depth of ramification”, J. Math. Sci., 112:3 (1999), 4285–4302 | DOI | MR | Zbl