On some product of $\mathrm{SM}$-groups
Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 170-175.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $A$ of a group $G$ is called $\mathrm{tcc}$-subgroup in $G$, if there is a subgroup $T$ of $G$ such that $G=AT$ and for any $X\le A$ and $Y\le T$ there exists an element $u\in \langle X,Y\rangle $ such that $XY^u\leq G$. The notation $H\le G $ means that $H$ is a subgroup of a group $G$. In this paper we proved that the class of all $\mathrm{SM}$-groups is closed under the product of $\mathrm{tcc}$-subgroups. Here an $\mathrm{SM}$-group is a group where each subnormal subgroup permutes with every maximal subgroup.
Keywords: factorizable group, $\mathrm{tcc}$-subgroup, $\mathrm{SM}$-group.
@article{CHEB_2024_25_1_a12,
     author = {D. V. Gritsuk and A. A. Trofimuk},
     title = {On some product of $\mathrm{SM}$-groups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {170--175},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a12/}
}
TY  - JOUR
AU  - D. V. Gritsuk
AU  - A. A. Trofimuk
TI  - On some product of $\mathrm{SM}$-groups
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 170
EP  - 175
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a12/
LA  - ru
ID  - CHEB_2024_25_1_a12
ER  - 
%0 Journal Article
%A D. V. Gritsuk
%A A. A. Trofimuk
%T On some product of $\mathrm{SM}$-groups
%J Čebyševskij sbornik
%D 2024
%P 170-175
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a12/
%G ru
%F CHEB_2024_25_1_a12
D. V. Gritsuk; A. A. Trofimuk. On some product of $\mathrm{SM}$-groups. Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 170-175. http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a12/

[1] Monakhov, V. S., Introduction to the Theory of Finite Groups and Their Classes, Vysh. Shkola, Minsk, 2006 (in Russian)

[2] Ballester-Bolinches A., Esteban-Romero R., Asaad M., Products of finite groups, Walter de Gruyter, Berlin, 2010 | MR | Zbl

[3] Skiba, A. N., “$H$-permutable subgroups”, Izv. Gom. state F. Skaryna University, 2003, no. 4, 37–39

[4] Trofimuk A.A., “On the supersolubility of a group with some tcc-subgroups”, Journal of Algebra and Its Applications, 2021, 2150020, 18 pp. | DOI | MR | Zbl

[5] Trofimuk, A. A., “A remark on a product of two tcc-subgroups”, Chebyshevskii sbornik, 22:1 (2021), 495–501 | DOI | MR | Zbl

[6] Guo W., Shum K. P., Skiba A. N., “Criterions of supersolubility for products of supersoluble groups”, Publ. Math. Debrecen, 68:3-4 (2006), 433–449 | DOI | MR | Zbl

[7] Asaad M., Shaalan A., “On the supersolubility of finite groups”, Arch. Math., 53 (1989), 318–326 | DOI | MR | Zbl

[8] Arroyo-Jorda M., Arroyo-Jorda P., Martinez-Pastor A., Perez-Ramos M. D., “On conditional permutability and factorized groups”, Annali di Matematica Pura ed Applicata, 193 (2014), 1123–1138 | DOI | MR | Zbl

[9] Guo W., Structure theory for canonical classes of finite groups, Springer, Berlin–Heidelberg–New York, 2015, 359 pp. | MR | Zbl

[10] Beidleman J. C., Heineken H., “Pronormal and subnormal subgroups and permutability”, Boll. Un. Mat. Ital., 6:8 (2003), 605–615 | MR | Zbl

[11] Arroyo-Jorda M., Arroyo-Jorda P., “Conditional permutability of subgroups and certain classes of groups”, Journal of Algebra, 476 (2017), 395–414 | DOI | MR | Zbl

[12] Beidleman J. C., Heineken H., Hauck P., “Totally permutable products of certain classes of finite groups”, J. Algebra, 276 (2004), 826–835 | DOI | MR | Zbl