$Wt-$ distance over $b-$ metric space
Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 155-163

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the $wt-$distance characteristics over $b-$metric space and the conditions required to ensure the presence of the fixed point by letting $\beta -$function appropriately. In addition, we prove some fixed point theorems.
Keywords: $wt-$ metric, $b-$ metric, $\beta-$ function, fixed point.
@article{CHEB_2024_25_1_a10,
     author = {E. Almukhur and M. Kusini and A. Alnana and M. Al-Labadi},
     title = {$Wt-$ distance over $b-$ metric space},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {155--163},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a10/}
}
TY  - JOUR
AU  - E. Almukhur
AU  - M. Kusini
AU  - A. Alnana
AU  - M. Al-Labadi
TI  - $Wt-$ distance over $b-$ metric space
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 155
EP  - 163
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a10/
LA  - en
ID  - CHEB_2024_25_1_a10
ER  - 
%0 Journal Article
%A E. Almukhur
%A M. Kusini
%A A. Alnana
%A M. Al-Labadi
%T $Wt-$ distance over $b-$ metric space
%J Čebyševskij sbornik
%D 2024
%P 155-163
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a10/
%G en
%F CHEB_2024_25_1_a10
E. Almukhur; M. Kusini; A. Alnana; M. Al-Labadi. $Wt-$ distance over $b-$ metric space. Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 155-163. http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a10/