$Wt-$ distance over $b-$ metric space
Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 155-163.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we examine the $wt-$distance characteristics over $b-$metric space and the conditions required to ensure the presence of the fixed point by letting $\beta -$function appropriately. In addition, we prove some fixed point theorems.
Keywords: $wt-$ metric, $b-$ metric, $\beta-$ function, fixed point.
@article{CHEB_2024_25_1_a10,
     author = {E. Almukhur and M. Kusini and A. Alnana and M. Al-Labadi},
     title = {$Wt-$ distance over $b-$ metric space},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {155--163},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a10/}
}
TY  - JOUR
AU  - E. Almukhur
AU  - M. Kusini
AU  - A. Alnana
AU  - M. Al-Labadi
TI  - $Wt-$ distance over $b-$ metric space
JO  - Čebyševskij sbornik
PY  - 2024
SP  - 155
EP  - 163
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a10/
LA  - en
ID  - CHEB_2024_25_1_a10
ER  - 
%0 Journal Article
%A E. Almukhur
%A M. Kusini
%A A. Alnana
%A M. Al-Labadi
%T $Wt-$ distance over $b-$ metric space
%J Čebyševskij sbornik
%D 2024
%P 155-163
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a10/
%G en
%F CHEB_2024_25_1_a10
E. Almukhur; M. Kusini; A. Alnana; M. Al-Labadi. $Wt-$ distance over $b-$ metric space. Čebyševskij sbornik, Tome 25 (2024) no. 1, pp. 155-163. http://geodesic.mathdoc.fr/item/CHEB_2024_25_1_a10/

[1] Czerwik S., “Nonlinear set-valued contraction mappings in $b-$ metric spaces”, Atti del Seminario Matematico e Fisico dell'Universita di Modena, 46 (1998), 263–276 | MR | Zbl

[2] Bakhtin I.A., “The contraction mapping principle in quasimetric spaces”, Journal of Functional Analysis, 30 (1989), 26–37 | MR | Zbl

[3] Gromov M., “Groups of polynomial growth and expanding maps”, Publications Mathématiques de l'Institut des Hautes Études Scientifiques, 53 (1981), 53–73 | DOI | MR | Zbl

[4] Kurepa, D.J., “Tableaux ramifiés d'ensembles, espaces pseudodistaciés”, Comptes Rendus de l'Académie des Sciences. Paris, 198 (1934), 1563–1565 | Zbl

[5] Branciari A., “A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces”, Publicationes Mathematicae Debrecen, 57 (2000), 31–37 | DOI | MR | Zbl

[6] Suzuki T., Journal of Inequalities and Applications, 256 (2017), 1–11 | DOI

[7] Singh SL, Czerwik S, Król, K and Singh., “A Coincidences and fixed points of hybrid contractions”, Tamsui Oxford Journal of Information and Mathematical Sciences, 24, 401–416 | MR | Zbl

[8] Rockafellar R, Tyrrell; Wets, Roger J-B., Variational Analysis, Springer-Verlag, 2005, 117 pp.

[9] Berinde, V., “Generalized contractions in quasimetric spaces”, Semin. Fixed Point Theory, 3 (1993), 3–9 | MR | Zbl

[10] Rus, I.A., Generalized Contractions and Applications, Cluj University Press, Clui-Napoca, Romania, 2001 | MR | Zbl

[11] Karapınar E, Chifu C., “Results in wt-Distance over $b$-Metric Spaces”, SIGMA Mathematics, 220:8 (2020), 1–10

[12] Popescu, O., “Some new fixed point theorems for $\beta-$ Geraghty contractive type maps in metric spaces”, Fixed Point Theory and Applications, 2014, 190 pp. | DOI | MR

[13] Khojasteh, F.; Shukla, S.; Radenovi C, S., “A new approach to the study of fixed point theorems via simulation functions”, Filomat, 29 (2015), 1189–1194 | DOI | MR | Zbl

[14] Aydi, H., “Fixed point results for weakly contractive mappings in ordered partial metric spaces”, Journal of Advanced Mathematical Studies, 4:2 (2011), 1–12 | MR | Zbl

[15] Al-Sharif, S., Al-Khaleel, M., Khandaqji, M., “Coupled Fixed Point Theorems for Nonlinear Contractions in Partial Metric Spaces”, International Journal of Mathematics and Mathematical Sciences, 2012, 1–12 | DOI | MR