Representation of subharmonic functions in the half-ring and in the half-disk
Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 136-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work contains results in which representations of subharmonic functions on the most mentioned sets in a half-plane — in a half-ring and in a half-disk — are given. Classical results in this direction are, for example, the Nevanlinna, Poisson-Jensen and Shimizu-Ahlfors formulas of the representation of a meromorphic function in a closed disk and in a closed half-disk, as well as the Riesz-Martin theorem on the representation of subharmonic functions. In the works of T. Carleman (1933) and B. Ya. Levin (1941) for functions that are analytic and meromorphic in the closure of a half-ring and in the closure of a half-disk on the complex plane, formulas that relate the logarithm of the modulus of a function with the location of its zeros and poles were obtained. These formulas have found numerous applications in the theory of entire and meromorphic functions. Independently of each other, Jun-Iti Ito and A. F. Grishin (1968) extended the Levin and Carleman formulas to subharmonic functions in an open half-disk. Note, however, that Grishin's formulas using the Martin function, in our opinion, are more visual and convenient for practical use. In addition, A. F. Grishin formulated (without proof) a theorem on the representation of a subharmonic function in a semi-open half-ring. N. V. Govorov (1968) extended the Levin and Carleman formulas to analytic functions in a semi-closed half-disk and in a semi-closed half-ring. By the expression "semi-closed set" we mean a set on the complex plane, part of the boundary of which belongs to the set, and the rest of the boundary does not belong to it. In particular, by a semi-closed half-ring or a semi-closed half-disk in the upper half-plane of a complex variable we mean a half-ring or half-disk whose intersection of boundary with the real axis does not belong to the given set. In the article, we extend Grishin's formula to subharmonic functions in an open half-ring. We introduce the concept of full measure of a subharmonic function in an open half-ring, which generalizes the concept of full measure in the sense of Grishin. Due to this, the representation of the subharmonic function in the open half-ring, which is the simplest in form and with the least restrictions on the function, is obtained.
Keywords: Levin formula, Carleman formula, half-plane, half-ring, half-disk, subharmonic function, boundary measure, full measure, Riesz measure, singular measure.
@article{CHEB_2023_24_5_a8,
     author = {K. G. Malyutin and A. A. Naumova},
     title = {Representation of subharmonic functions in the half-ring and in the half-disk},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {136--152},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a8/}
}
TY  - JOUR
AU  - K. G. Malyutin
AU  - A. A. Naumova
TI  - Representation of subharmonic functions in the half-ring and in the half-disk
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 136
EP  - 152
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a8/
LA  - ru
ID  - CHEB_2023_24_5_a8
ER  - 
%0 Journal Article
%A K. G. Malyutin
%A A. A. Naumova
%T Representation of subharmonic functions in the half-ring and in the half-disk
%J Čebyševskij sbornik
%D 2023
%P 136-152
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a8/
%G ru
%F CHEB_2023_24_5_a8
K. G. Malyutin; A. A. Naumova. Representation of subharmonic functions in the half-ring and in the half-disk. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 136-152. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a8/

[1] Ahiezer N. I., Elements of the theory of elliptic functions, Nauka, M., 1970 | MR

[2] Goluzin G. M., Geometric theory of functions of a complex variable, Nauka, M., 1966 | MR

[3] Gol'dberg, A. A., Ostrovskii, I. V., Value Distribution of Meromorphic Functions, Nauka, M., 1970 | MR

[4] Grishin A. F., Subharmonic functions of finite order, Abstract Dr. Sc. dissertation, Kharkov, Ukraine, 1992

[5] Grishin, A. F., “Continuity and asymptotic continuity of subharmonic functions. I”, Mathematical Physics, Analysis and Geometry, 1:2 (1994), 193–215 | MR | Zbl

[6] Grishin, A. F., “Continuity and asymptotic continuity of subharmonic functions. II”, Mathematical Physics, Analysis and Geometry, 2:2 (1995), 177–193 | MR | Zbl

[7] Levin, B. Ya., “On functions holomorphic in a half-plane”, Trudy Odes'kogo derzhavnogo un-ta, 2 (1941), 5–14

[8] Privalov I. I., Subharmonic functions, GRTTL, M.–L., 1937

[9] Brelot M., On topologies and boundaries in potential theory, Springer, Berlin–Heidelberg–New York, 1971, 224 pp. | MR | Zbl

[10] Carleman T., “Sur une inégalité différentielledans la théorie des fonctions analtiques”, C. r. Acad. Sci., 196 (1933), 995–997 | Zbl

[11] Fedorov M. A., Grishin A. F., “Some Questions of the Nevanlinna Theory for the Complex Half-Plane”, Mathematical Physics, Analysis and Geometry, 1:3 (1998), 1–49 | MR

[12] Govorov N. V., Riemann's Boundary Problem with Infinite Index, Birkäuser, Basel–Boston–Berlin, 1994, 263 pp. | MR

[13] Grishin A. F., Malyutina T. I., “Subharmonic Functions Satisfying the Local Levin Condition”, Israel Mathematical Conference Proceedings, 15 (2001), 137–147 | MR | Zbl

[14] Hayman W. K., Kennedy P. B., Subharmonic Functions, v. I, Academic Press, London–New York–San Fracisko, 1976, 284 pp. | MR | Zbl

[15] Ito Jun-Iti, “Subharmonic functions in a half-plane”, Trans. Amer. Math. Soc., 129:3 (1967), 479–499 | DOI | MR | Zbl

[16] Koosis P., Introduction to $\mathbf{H_p}$ Spaces, Cambridge university press, Cambridge, 1998, 295 pp. | MR

[17] Levin B. Ya., Distribution of Zeros of Entire Functions, English revised edition, Amer. Math. Soc., Providence, RI, 1980, 523 pp. | MR

[18] Malyutin K. G., “The problem of multiple interpolation in the half-plane in the class of analytic functions of finite order and normal type”, Russian Acad. Sci. Sb. Math., 78:1 (1994), 253–266 | MR

[19] Malyutin K. G., “On sets of regular growth of functions in a half-plane. I”, Izvestija RAN. Mathematics, 59:4 (1995), 125–154 | MR | Zbl

[20] Malyutin K. G., “On sets of regular growth of functions in a half-plane. II”, Izvestija RAN. Mathematics, 59:5 (1995), 103–126 | MR | Zbl

[21] Malyutin K. G., “Fourier series and $\delta$-subharmonic functions of finite $\gamma$-type in a half-plane”, Sb. Math., 192:6 (2001), 843–861 | DOI | MR | Zbl

[22] Malyutin K. G., Sadik N. M., “Presentation of subharmonic functions in a half-plane”, Russian Acad. Sci. Sb. Math., 198:12 (2007), 47–62 | MR | Zbl

[23] Malyutin K. G., Kabanko M. V., Malyutina T. I., “Integrals and indicators of subharmonic functions. I”, Chebyshevskii sbornik, 19:2 (2018), 272–303 | DOI | MR | Zbl

[24] Malyutin K. G., Kabanko M. V., Malyutina T. I., “Integrals and indicators of subharmonic functions. II”, Chebyshevskii sbornik, 20:4 (2019), 236–269 | MR | Zbl

[25] Malyutin K. G., Gusev A. L., “The interpolation problem in the spaces of analytical functions of finite order in the half-plane”, Probl. Anal. Issues Anal., 7:25, Special Issue (2018), 113–123 | MR | Zbl

[26] Malyutin K. G., Gusev A. L., “The interpolation problem in the spaces of analytical functions of finite order in the half-plane”, Probl. Anal. Issues Anal., 8:26 (2019), 96–104 | MR | Zbl

[27] Malyutin K. G., Kabanko M. V., “Multiple Interpolation by the Functions of Finite Order in the Half-Plane”, Lobachevskii Journal of Mathematics, 41:11 (2020), 2211–2222 | DOI | MR | Zbl

[28] Malyutin K. G., Kabanko M. V., Kozlova I. I., “Multiple Interpolation by the Functions of Finite Order in the Half-Plane. II”, Lobachevskii Journal of Mathematics, 42:4 (2021), 811–822 | DOI | MR | Zbl

[29] Riesz F., “Sur les functions subharmoniques et leur rapport a la théorie du potentiel”, Acta Math., 48 (1926), 329–343 | DOI | MR

[30] Riesz F., “Sur les functions subharmoniques et leur rapport a la théorie du potentiel”, Acta Math., 54 (1930), 321–360 | DOI | MR