Verification of the generalized hypothesis of Mishchenko--Fomenko for Lie algebras of small dimension
Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 126-135
Voir la notice de l'article provenant de la source Math-Net.Ru
In the case of Lie algebras $\mathfrak{g}$ of small dimension $\leq 7$, an enhanced version of the Generalised argument shift conjecture is proved, namely, it is shown that for any element $a\in\mathfrak{g}^*$ on the dual space $\mathfrak{g}^*$ there is a complete set of polynomials in the bi-involution with respect to the standard Poisson-Lie bracket and the frozen argument bracket associated with the covector $a$.
Keywords:
Lie–Poison bracket, compatible Poisson bracket , sets of polynomials in bi-involution.
@article{CHEB_2023_24_5_a7,
author = {F. I. Lobzin},
title = {Verification of the generalized hypothesis of {Mishchenko--Fomenko} for {Lie} algebras of small dimension},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {126--135},
publisher = {mathdoc},
volume = {24},
number = {5},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a7/}
}
TY - JOUR AU - F. I. Lobzin TI - Verification of the generalized hypothesis of Mishchenko--Fomenko for Lie algebras of small dimension JO - Čebyševskij sbornik PY - 2023 SP - 126 EP - 135 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a7/ LA - ru ID - CHEB_2023_24_5_a7 ER -
F. I. Lobzin. Verification of the generalized hypothesis of Mishchenko--Fomenko for Lie algebras of small dimension. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 126-135. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a7/