Mots-clés : compatible Poisson bracket
@article{CHEB_2023_24_5_a7,
author = {F. I. Lobzin},
title = {Verification of the generalized hypothesis of {Mishchenko{\textendash}Fomenko} for {Lie} algebras of small dimension},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {126--135},
year = {2023},
volume = {24},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a7/}
}
F. I. Lobzin. Verification of the generalized hypothesis of Mishchenko–Fomenko for Lie algebras of small dimension. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 126-135. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a7/
[1] Mishchenko A. S. Fomenko A. T., “Euler equations on finite-dimensional Lie groups”, Math. USSR-Izv., 12:2 (1978), 371–389 | DOI | MR | Zbl
[2] Bolsinov A. V., Zhang P., “Jordan–Kronecker invariants of finite–dimensional Lie algebras”, Transformation Groups, 21 (2016), 51–86 | DOI | MR | Zbl
[3] Bolsinov A. V., Matveev V. S., Miranda E., Tabachnikov S., “Open problems, questions and challenges in finitedimensional integrable systems”, Phil. Trans. R, 376 (2018) | MR
[4] Sadetov S. T., “A proof of the Mishchenko-Fomenko conjecture”, Dokl. Math., 70:1 (2004), 635–638 | MR | Zbl
[5] Bolsinov A. V., “Compatible Poisson brackets on Lie algebras and completeness of families of functions in involution”, Math. USSR–Izv., 38:1 (1992), 69–90 | DOI | MR
[6] Vorushilov K. C., “Complete sets of polynomials in bi-involution on nilpotent seven-dimensional Lie algebras”, Sb. Math., 212:9 (2021), 1193–1207 | DOI | DOI | MR | Zbl
[7] Patera J., Sharp R. T., Winternitz P., Zassenhaus H., “Invariants of real low dimension Lie algebras”, J. Mathematical Phys., 17:6 (1976), 986–994 | DOI | MR | Zbl
[8] Ooms A. I., “The Poisson center and polynomial, maximal Poisson commutative subalgebras, especially for nilpotent Lie algebras of dimension at most seven”, Journal of algebra, 365 (2012), 83–113 | DOI | MR | Zbl
[9] Ming-Peng Gong, Classification of Nilpotent Lie Algebras of Dimension 7 (over algebraically closed fields and R), PhD thesis, University of Waterloo, Ontario, Canada, 1998 http://hdl.handle.net/10012/1148 | MR | Zbl