Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_5_a14, author = {A. P. Krylov and N. M. Dobrovolsky}, title = {Hyperbolic zeta function of two-dimensional diagonal unimodular lattices}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {217--221}, publisher = {mathdoc}, volume = {24}, number = {5}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a14/} }
TY - JOUR AU - A. P. Krylov AU - N. M. Dobrovolsky TI - Hyperbolic zeta function of two-dimensional diagonal unimodular lattices JO - Čebyševskij sbornik PY - 2023 SP - 217 EP - 221 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a14/ LA - ru ID - CHEB_2023_24_5_a14 ER -
A. P. Krylov; N. M. Dobrovolsky. Hyperbolic zeta function of two-dimensional diagonal unimodular lattices. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 217-221. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a14/
[1] Dobrovol'skaya, L. P., Dobrovol'skii, M. N., Dobrovol'skii, N. M., Dobrovol'skii, N. N., “The hyperbolic Zeta function of grids and lattices, and calculation of optimal coefficients”, Chebyshevskii sbornik, 13:4(44) (2012), 4–107 | Zbl
[2] Kassels, D., Introduction to the geometry of numbers, Mir, M., 1965 (Russia)
[3] Krylov, A. P., Dobrovolsky, N. M., “Metric space of two-dimensional diagonal unimodular lattices”, Notes of scientific seminars of the Tula School of Number Theory, 2022, no. 1, 37–41 | DOI
[4] Dobrovolskaya L. P., Dobrovolsky M. N., Dobrovol'skii N. M., Dobrovolsky N. N., “On Hyperbolic Zeta Function of Lattices”, Continuous and Distributed Systems. Solid Mechanics and Its Applications, 211 (2014), 23–62 | DOI | MR | Zbl