Hyperbolic zeta function of two-dimensional diagonal unimodular lattices
Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 217-221.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies the properties of the hyperbolic zeta function of diagonal two-dimensional unimodular lattices. A theorem on the analytic continuation of this function is proved.
Keywords: hyperbolic zeta function of lattices, metric lattice space, unimodular lattices, diagonal lattices, fundamental lattices.
@article{CHEB_2023_24_5_a14,
     author = {A. P. Krylov and N. M. Dobrovolsky},
     title = {Hyperbolic zeta function of two-dimensional diagonal unimodular lattices},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {217--221},
     publisher = {mathdoc},
     volume = {24},
     number = {5},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a14/}
}
TY  - JOUR
AU  - A. P. Krylov
AU  - N. M. Dobrovolsky
TI  - Hyperbolic zeta function of two-dimensional diagonal unimodular lattices
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 217
EP  - 221
VL  - 24
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a14/
LA  - ru
ID  - CHEB_2023_24_5_a14
ER  - 
%0 Journal Article
%A A. P. Krylov
%A N. M. Dobrovolsky
%T Hyperbolic zeta function of two-dimensional diagonal unimodular lattices
%J Čebyševskij sbornik
%D 2023
%P 217-221
%V 24
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a14/
%G ru
%F CHEB_2023_24_5_a14
A. P. Krylov; N. M. Dobrovolsky. Hyperbolic zeta function of two-dimensional diagonal unimodular lattices. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 217-221. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a14/

[1] Dobrovol'skaya, L. P., Dobrovol'skii, M. N., Dobrovol'skii, N. M., Dobrovol'skii, N. N., “The hyperbolic Zeta function of grids and lattices, and calculation of optimal coefficients”, Chebyshevskii sbornik, 13:4(44) (2012), 4–107 | Zbl

[2] Kassels, D., Introduction to the geometry of numbers, Mir, M., 1965 (Russia)

[3] Krylov, A. P., Dobrovolsky, N. M., “Metric space of two-dimensional diagonal unimodular lattices”, Notes of scientific seminars of the Tula School of Number Theory, 2022, no. 1, 37–41 | DOI

[4] Dobrovolskaya L. P., Dobrovolsky M. N., Dobrovol'skii N. M., Dobrovolsky N. N., “On Hyperbolic Zeta Function of Lattices”, Continuous and Distributed Systems. Solid Mechanics and Its Applications, 211 (2014), 23–62 | DOI | MR | Zbl