Hyperbolic zeta function of two-dimensional diagonal unimodular lattices
Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 217-221
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper studies the properties of the hyperbolic zeta function of diagonal two-dimensional unimodular lattices. A theorem on the analytic continuation of this function is proved.
Keywords:
hyperbolic zeta function of lattices, metric lattice space, unimodular lattices, diagonal lattices, fundamental lattices.
@article{CHEB_2023_24_5_a14,
author = {A. P. Krylov and N. M. Dobrovolsky},
title = {Hyperbolic zeta function of two-dimensional diagonal unimodular lattices},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {217--221},
publisher = {mathdoc},
volume = {24},
number = {5},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a14/}
}
TY - JOUR AU - A. P. Krylov AU - N. M. Dobrovolsky TI - Hyperbolic zeta function of two-dimensional diagonal unimodular lattices JO - Čebyševskij sbornik PY - 2023 SP - 217 EP - 221 VL - 24 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a14/ LA - ru ID - CHEB_2023_24_5_a14 ER -
A. P. Krylov; N. M. Dobrovolsky. Hyperbolic zeta function of two-dimensional diagonal unimodular lattices. Čebyševskij sbornik, Tome 24 (2023) no. 5, pp. 217-221. http://geodesic.mathdoc.fr/item/CHEB_2023_24_5_a14/