Universality and antiuniversality theorems for zeta functions of monoids of natural numbers
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 104-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

Classes of monoids were identified for which the condition of the generalized Selberg lemma is satisfied, for which the strong Selberg–Bredikhin condition is satisfied, and for which the strengthened asymptotic law in Bredikhin form is satisfied. For these classes of monoids, new results on analytical continuation to the left of the abscissa of absolute convergence are obtained. An analogue of the main lemma of S. M. Voronin is obtained from the work on the universality of the Riemann zeta function in the case of zeta functions of a monoid for which the condition of the generalized Selberg lemma or the stronger Selberg–Bredikhin condition is satisfied. For the class of regular Selberg–Bredikhin monoids of natural numbers, we succeeded in proving the universality theorem for the zeta function of the corresponding monoid.
Keywords: quadratic fields, approximation of algebraic grids, quality function, generalized parallelepipedal grid.
@article{CHEB_2023_24_4_a8,
     author = {M. N. Dobrovol'skii and N. N. Dobrovol'skii and A. V. Afonina and N. M. Dobrovol'skii and I. N. Balaba and I. Yu. Rebrova},
     title = {Universality and antiuniversality theorems for zeta functions of monoids of natural numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {104--136},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a8/}
}
TY  - JOUR
AU  - M. N. Dobrovol'skii
AU  - N. N. Dobrovol'skii
AU  - A. V. Afonina
AU  - N. M. Dobrovol'skii
AU  - I. N. Balaba
AU  - I. Yu. Rebrova
TI  - Universality and antiuniversality theorems for zeta functions of monoids of natural numbers
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 104
EP  - 136
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a8/
LA  - ru
ID  - CHEB_2023_24_4_a8
ER  - 
%0 Journal Article
%A M. N. Dobrovol'skii
%A N. N. Dobrovol'skii
%A A. V. Afonina
%A N. M. Dobrovol'skii
%A I. N. Balaba
%A I. Yu. Rebrova
%T Universality and antiuniversality theorems for zeta functions of monoids of natural numbers
%J Čebyševskij sbornik
%D 2023
%P 104-136
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a8/
%G ru
%F CHEB_2023_24_4_a8
M. N. Dobrovol'skii; N. N. Dobrovol'skii; A. V. Afonina; N. M. Dobrovol'skii; I. N. Balaba; I. Yu. Rebrova. Universality and antiuniversality theorems for zeta functions of monoids of natural numbers. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 104-136. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a8/

[1] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[2] B. M. Bredikhin, “Svobodnye chislovye polugruppy so stepennymi plotnostyami”, Dokl. AN SSSR, 118:5 (1958), 855–857

[3] B. M. Bredikhin, “Elementarnoe reshenie obratnykh zadach o bazisakh svobodnykh polugrupp”, Matem. sb., 50(92):2 (1960), 221–232 | Zbl

[4] Voronin S. M., “Teorema ob “universalnosti” dzeta-funktsii Rimana”, Izv. AN SSSR. Ser. mat., 39:3 (1975), 475–486 | MR | Zbl

[5] Voronin S. M., Karatsuba A. A., Dzeta-funktsiya Rimana, Fizmatlit, M., 1994, 376 pp. | MR

[6] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968, 618 pp.

[7] Demidov S. S., Morozova E. A., Chubarikov V. N., Rebrova I. Yu., Balaba I. N., Dobrovolskii N. N., Dobrovolskii N. M., Dobrovolskaya L. P., Rodionov A. V., Pikhtilkova O. A., “Teoretiko-chislovoi metod v priblizhennom analize”, Chebyshevskii sb., 18:4 (2017), 6–85 | DOI | MR | Zbl

[8] N. N. Dobrovolskii, “Dzeta-funktsiya monoidov naturalnykh chisel s odnoznachnym razlozheniem na prostye mnozhiteli”, Chebyshevskii sb., 18:4 (2017), 187–207 | DOI | MR

[9] Dobrovolskii N. N., “O monoidakh naturalnykh chisel s odnoznachnym razlozheniem na prostye elementy”, Chebyshevskii sb., 19:1 (2018), 79–105 | DOI | MR | Zbl

[10] Dobrovolskii N. N., “Dzeta-funktsiya monoidov s zadannoi abstsissoi absolyutnoi skhodimosti”, Chebyshevskii sb., 19:2 (2018), 142–150 | DOI | MR | Zbl

[11] Dobrovolskii N. N., “Odna modelnaya dzeta-funktsiya monoida naturalnykh chisel”, Chebyshevckii sb., 20:1 (2019), 148–163 | DOI | Zbl

[12] N. N. Dobrovolskii, “Raspredelenie prostykh elementov v nekotorykh monoidakh naturalnykh chisel”, Matem. zametki (to appear)

[13] Dobrovolskii N. N., Dobrovolskii M. N., Dobrovolskii N. M., Balaba I. N., Rebrova I. Yu., “Gipoteza o "zagraditelnom ryade" dlya dzeta-funktsii monoidov s eksponentsialnoi posledovatelnostyu prostykh”, Chebyshevskii sb., 19:1 (2018), 106–123 | DOI | MR | Zbl

[14] Dobrovolskii N. N., Dobrovolskii M. N., Dobrovolskii N. M., Balaba I. N., Rebrova I. Yu., “Algebra ryadov Dirikhle monoida naturalnykh chisel”, Chebyshevckii sb., 20:1 (2019), 180–196 | Zbl

[15] Dobrovolskii N. N., Kalinina A. O., Dobrovolskii M. N., Dobrovolskii N. M., “O kolichestve prostykh elementov v nekotorykh monoidakh naturalnykh chisel”, Chebyshevckii sb., 19:2 (2018), 123–141 | DOI | Zbl

[16] Dobrovolskii N. N., Kalinina A. O., Dobrovolskii M. N., Dobrovolskii N. M., “O monoide kvadratichnykh vychetov”, Chebyshevckii sb., 19:3 (2018), 95–108 | DOI | Zbl

[17] N. N. Dobrovolskii, I. Yu. Rebrova, N. M. Dobrovolskii, “Obratnaya zadacha dlya monoida s eksponentsialnoi posledovatelnostyu prostykh”, Chebyshevckii sb., 21:1 (2020), 165–185 | DOI | MR

[18] N. N. Dobrovolskii, I. Yu. Rebrova, N. M. Dobrovolskii, “Entropiya dlya nekotorykh monoidov naturalnykh chisel”, Chebyshevckii sb., 23:5 (2022), 57–71 | DOI | MR | Zbl

[19] Zigmund A., Trigonometricheskie ryady, v. II, «Mir», M., 1965 | MR

[20] A. V. Kirilina, “O slaboi teoreme universalnosti”, Chebyshevckii sb., 21:4 (2020), 308–313 | MR | Zbl

[21] Izv. Math., 67:1, 77–90 | DOI | MR

[22] Pecherskii D. V., “O perestanovkakh chlenov v funktsionalnykh ryadakh”, Dokl. AN SSSR, 209:6 (1973), 1285–1287

[23] Chandrasekkharan K., Vvedenie v analiticheskuyu teoriyu chisel, Mir, M., 1974, 188 pp.

[24] Chudakov N. G., Vvedenie v teoriyu $L$-funktsii Dirikhle, OGIZ, M.–L., 1947, 204 pp. | MR