On the extremal set of quotient of natural numbers
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 354-360.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article studies the following problem. Let two finite subsets from the set of natural numbers be given, which will be denoted throughout the text as $A$ and $B$. We will assume that they belong to a finite interval of numbers $[1,Q]$. By definition, we define a set of fractions $A/B$ whose elements are representable as a quotient of these sets $A,B$, in other words such elements $a/b$, where $a \in A, b \in B$. The article investigates the properties of this subset of quotients. In the article [13], a non-trivial lower bound on the size of the set $A/B$ for such sets $A,B$ was obtained without any additional conditions on these sets. In this article, we in details consider an extreme case, which is as follows. Let it be known that the size of the set of products $AB$ is asymptotically the smallest possible. We deduce from this that the size of the set of quotients $A/B$ is the asymptotically largest possible value.
Keywords: integer numbers, density, smooth numbers, product.
@article{CHEB_2023_24_4_a22,
     author = {Yu. N. Shteynikov},
     title = {On the extremal set of quotient of natural numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {354--360},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a22/}
}
TY  - JOUR
AU  - Yu. N. Shteynikov
TI  - On the extremal set of quotient of natural numbers
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 354
EP  - 360
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a22/
LA  - ru
ID  - CHEB_2023_24_4_a22
ER  - 
%0 Journal Article
%A Yu. N. Shteynikov
%T On the extremal set of quotient of natural numbers
%J Čebyševskij sbornik
%D 2023
%P 354-360
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a22/
%G ru
%F CHEB_2023_24_4_a22
Yu. N. Shteynikov. On the extremal set of quotient of natural numbers. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 354-360. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a22/

[1] Shteinikov Yu., “On the product sets of rational numbers”, Proceedings of the Steklov Institute of Mathematics, 296:1 (2017), 243–250 | DOI | MR | Zbl

[2] Cilleruelo J., Ramana D.S., Ramare O., “Quotients and product sets of thin subsets of the positive integers”, Proceedings of the Steklov Institute of Mathematics, 296:1 (2017), 52–64 | DOI | MR | Zbl

[3] Prachar K., Primzahlverteilung, Springer–Verlag, Berlin–Gőttingen–Heidelberg, 1957 | MR | Zbl

[4] Shteinikov Yu. N., “Addendum to the paper “Quotients and product sets of thin subsets of the positive integers” by J. Cilleruelo, D.S. Ramana and O. Ramare”, Proceedings of the Steklov Institute of Mathematics, 296:1 (2017), 251–255 | DOI | MR | Zbl

[5] Hildebrand A., Tenenbaum G., “Integers without large prime factors”, Journal de Theorie des Nombres de Bordeaux, 5 (1993), 411–484 | MR | Zbl

[6] Bourgain J., Konyagin S.V., Shparlinski I.E., “Product sets of rationals, multiplicative translates of subgroups in residue rings and fixed points of the discrete logarithm”, Int. Math Research Notices, 2008, rnn 090, 1–29 | MR

[7] Cilleruelo J., “A note on product sets of rationals”, International Journal of Number Theory, 12:05 (2016), 1415–1420 | DOI | MR | Zbl

[8] Cilleruelo J., Garaev M., “Congruences involving product of intervals and sets with small multiplicative doubling modulo a prime and applications”, Math. Proc. Cambridge Phil. Soc., 160:03 (2016), 477–494 | DOI | MR | Zbl

[9] Konyagin S., Shkredov I., “New results on sums and products in R”, Proc. Steklov Inst. Math., 2016, no. 294, 78–88 | DOI | MR | Zbl

[10] Konyagin S., Shkredov I., “On Sum Sets of Sets Having Small Product Set”, Proc. Steklov Inst. Math., 290 (2015), 288–299 | DOI | MR | Zbl

[11] Tao T., Vu V., Additive combinatorics, Cambridge University Press, 2006, 1–530 | MR

[12] Shnirel'man L.G., “Uber additive Eigenschaften von Zahlen”, Mathematische Annalen, 107 (1933), 649–690 | DOI | MR | Zbl

[13] Shteinikov Yu.N., “On the Size of the Quotient of Two Subsets of Positive Integers”, Proceedings of the Steklov Institute of Mathematics, 303, 259–267 | DOI | MR