Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_4_a21, author = {N. M. Korobov and M. N. Dobrovol'skii and N. N. Dobrovol'skii and N. M. Dobrovol'skii}, title = {On the estimation of the error of quadrature formulas with optimal parallelepipedal grids {II}}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {345--353}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a21/} }
TY - JOUR AU - N. M. Korobov AU - M. N. Dobrovol'skii AU - N. N. Dobrovol'skii AU - N. M. Dobrovol'skii TI - On the estimation of the error of quadrature formulas with optimal parallelepipedal grids II JO - Čebyševskij sbornik PY - 2023 SP - 345 EP - 353 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a21/ LA - ru ID - CHEB_2023_24_4_a21 ER -
%0 Journal Article %A N. M. Korobov %A M. N. Dobrovol'skii %A N. N. Dobrovol'skii %A N. M. Dobrovol'skii %T On the estimation of the error of quadrature formulas with optimal parallelepipedal grids II %J Čebyševskij sbornik %D 2023 %P 345-353 %V 24 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a21/ %G ru %F CHEB_2023_24_4_a21
N. M. Korobov; M. N. Dobrovol'skii; N. N. Dobrovol'skii; N. M. Dobrovol'skii. On the estimation of the error of quadrature formulas with optimal parallelepipedal grids II. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 345-353. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a21/
[1] Dobrovol'skii, N. M., Korobov, N. M., “On the error estimation of quadrature formulas with optimal parallelepipedal grids”, Chebyshevskij sbornik, 3:1(3) (2002), 41–48 | MR | Zbl
[2] Korobov, N.M., Number-theoretic methods in approximate analysis, Fizmatgiz, Moscow, Russia, 1963
[3] Korobov, N.M., Number-theoretic methods in approximate analysis, 2nd ed., MTSNMO, Moscow, Russia, 2004
[4] N. K. Ter-Gukasova, M. N. Dobrovol'skii, N. N. Dobrovol'skii, N. M. Dobrovol'skii, “On the number of lattice points of linear comparison solutions in rectangular areas”, Chebyshevskii sbornik, 23:5 (2022), 130–144 | DOI | MR