Generalization of Goldbach's ternary problem with almost equal terms
Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 264-298

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotic formula is obtained for the number of representations of a sufficiently large natural $N$ in the form $b_1p_1+b_2p_2+b_3p_3=N$ with the conditions $$ \left|b_ip_i-\frac{N}3\right|\le H, H\ge (b_1b_2b_3)^\frac43N^\frac23(\ln N)^{60}, b_i\le(\ln N)^{B_i}, $$ where $b_1$, $b_2$ $b_3$, $N$ are pairwise coprime natural numbers, $B_i$ — arbitrary fixed positive numbers.
Keywords: ternary Goldbach problem, almost equal terms, short exponential sum with primes, small neighborhood of centers of major arcs.
@article{CHEB_2023_24_4_a15,
     author = {Z. Kh. Rakhmonov and I. Allakov and B. Kh. Abrayev},
     title = {Generalization of {Goldbach's} ternary problem with almost equal terms},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {264--298},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a15/}
}
TY  - JOUR
AU  - Z. Kh. Rakhmonov
AU  - I. Allakov
AU  - B. Kh. Abrayev
TI  - Generalization of Goldbach's ternary problem with almost equal terms
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 264
EP  - 298
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a15/
LA  - ru
ID  - CHEB_2023_24_4_a15
ER  - 
%0 Journal Article
%A Z. Kh. Rakhmonov
%A I. Allakov
%A B. Kh. Abrayev
%T Generalization of Goldbach's ternary problem with almost equal terms
%J Čebyševskij sbornik
%D 2023
%P 264-298
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a15/
%G ru
%F CHEB_2023_24_4_a15
Z. Kh. Rakhmonov; I. Allakov; B. Kh. Abrayev. Generalization of Goldbach's ternary problem with almost equal terms. Čebyševskij sbornik, Tome 24 (2023) no. 4, pp. 264-298. http://geodesic.mathdoc.fr/item/CHEB_2023_24_4_a15/