Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_3_a17, author = {M. Yu. Sokolova and D. V. Khristich}, title = {Identification of a model of a nonlinear elastic anisotropic material with cubic symmetry of properties}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {320--332}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a17/} }
TY - JOUR AU - M. Yu. Sokolova AU - D. V. Khristich TI - Identification of a model of a nonlinear elastic anisotropic material with cubic symmetry of properties JO - Čebyševskij sbornik PY - 2023 SP - 320 EP - 332 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a17/ LA - ru ID - CHEB_2023_24_3_a17 ER -
%0 Journal Article %A M. Yu. Sokolova %A D. V. Khristich %T Identification of a model of a nonlinear elastic anisotropic material with cubic symmetry of properties %J Čebyševskij sbornik %D 2023 %P 320-332 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a17/ %G ru %F CHEB_2023_24_3_a17
M. Yu. Sokolova; D. V. Khristich. Identification of a model of a nonlinear elastic anisotropic material with cubic symmetry of properties. Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 320-332. http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a17/
[1] Thurston R. N., Brugger K., “Third-order elastic constants and the velocity of small amplitude waves in homogeneously stressed media”, Phys. Rev., 133 (1964), A1604–A1610 | DOI
[2] Brugger K., “Pure modes for elastic waves in crystals”, J. Appl. Phys., 36:3 (1965), 759–768 | DOI | MR
[3] Eastman D. E., “Measurement of third order elastic moduli of ittrium iron garnet”, J. Appl. Phys., 37:6 (1966), 2312–2316 | DOI
[4] Pham H. H., Cagin T., “Lattice dynamics and second and third order elastic constants of iron at elevated pressures”, Computers, materials and continua CMC, 16:2 (2010), 175–194
[5] Kube C. M., Turner J. A., “Estimates of nonlinear elastic constants and acoustic nonlinearity parameters for textured polycrystals”, Journal of Elasticity, 122:2 (2016), 157–177 | DOI | MR | Zbl
[6] Kube C. M., “Scattering of harmonic waves from a nonlinear elastic inclusion”, J. Acoust. Soc. Am., 141:6 (2017) | DOI
[7] Li X., “First-principles study of the third-order elastic constants and related anharmonic properties in refractory high-entropy alloys”, Acta Materialia, 142 (2017)
[8] Telichko A. V., Erohin S. V., Kvashnin G. M., Sorokin P. B., Sorokin B. P., Blank V. D., “Diamond's third-order elastic constants: ab initio calculations and experimental investigation”, J. Mater. Sci., 52:6 (2017), 3447–3456 | DOI
[9] Lubarda V. A., “New estimates of the third-order elastic constants for isotropic aggregates of cubic crystals”, J. Mech. Phys. Solids, 45:4 (1997), 471–490 | DOI | Zbl
[10] Zhang H., Lu D., Sun Y., Fu Y., Tong L., “The third-order elastic constants and mechanical properties of $30^{\circ}$ partial dislocation in germanium: A study from the first-principles calculations and the improved Peierls–Nabarro model”, Crystals, 12:1 (2022), 4 | DOI | MR
[11] Guz' A. N., Elastic waves in bodies with initial stresses, in two volumes, Naukova Dumka, Kiev, 1986 (in Russian)
[12] Lurie, A. I., Non-linear theory of elasticity, North Holland, 2012 | MR
[13] Sirotin, Yu., Shaskolskaya, M., Fundamentals of crystal physics, Mir Publishers, M., 1982, 656 pp.
[14] Fedorov, F. I., Theory of elastic waves in crystals, Nauka, M., 1965, 388 pp. (in Russian)
[15] Sokolova, M. Yu. Khristich, D. V., “Finite strains of nonlinear elastic anisotropic materials”, Tomsk State University Journal of Mathematics and Mechanics, 70 (2021), 103–116
[16] Markin, A. A., Sokolova, M. Yu., Thermomechanics of elastoplastic deformation, Cambridge International Science Publishing, Cambridge, 2015
[17] Pau A., Vestroni F., “The role of material and geometric nonlinearities in acoustoelasticity”, Wave Motion, 86 (2019), 79–90 | DOI | MR | Zbl
[18] Sokolova M., Astapov Y., Khristich D., “Identification of the model of nonlinear elasticity in dynamic experiments”, International Journal of Applied Mechanics, 13:2 (2021), 2150025 | DOI