On the sequence of fractional parts of the ratio of Fibonacci numbers $x_{n+1}=\left\{\frac{F_{n+1}}{F_n}x_n\right\}$
Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 242-250.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper for the expension of real numbers on Fibonacci sequence theorems on the uniform distribution of remainders for almost of all real numbers in the sense of Lebesgue's measure. the conclusion of this theorem is based on the Weyl's criteria of the uniform distribution of a sequence modulo unit and on the lemma.
Keywords: the Fibonacci's sequence, H.Weyl's criteria, lemma of Borel – Kantelli.
@article{CHEB_2023_24_3_a12,
     author = {A. Kh. Ghiyasi and I. P. Mikhailov and V. N. Chubarikov},
     title = {On the sequence of fractional parts of the ratio of {Fibonacci} numbers $x_{n+1}=\left\{\frac{F_{n+1}}{F_n}x_n\right\}$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {242--250},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a12/}
}
TY  - JOUR
AU  - A. Kh. Ghiyasi
AU  - I. P. Mikhailov
AU  - V. N. Chubarikov
TI  - On the sequence of fractional parts of the ratio of Fibonacci numbers $x_{n+1}=\left\{\frac{F_{n+1}}{F_n}x_n\right\}$
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 242
EP  - 250
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a12/
LA  - ru
ID  - CHEB_2023_24_3_a12
ER  - 
%0 Journal Article
%A A. Kh. Ghiyasi
%A I. P. Mikhailov
%A V. N. Chubarikov
%T On the sequence of fractional parts of the ratio of Fibonacci numbers $x_{n+1}=\left\{\frac{F_{n+1}}{F_n}x_n\right\}$
%J Čebyševskij sbornik
%D 2023
%P 242-250
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a12/
%G ru
%F CHEB_2023_24_3_a12
A. Kh. Ghiyasi; I. P. Mikhailov; V. N. Chubarikov. On the sequence of fractional parts of the ratio of Fibonacci numbers $x_{n+1}=\left\{\frac{F_{n+1}}{F_n}x_n\right\}$. Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 242-250. http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a12/

[1] Hardy G. H., Littlewood J. E., “The fractional part of $n^k\theta$”, Acta math., 37 (1914) | MR

[2] Borel E., “Les probabilités dénombarables et leurs applications arithmétiques”, Rend Circolo math. Palermo, 27 (1909); Избр.тр., 366–371

[3] Gel'fond A. O., “On one general property of numerical system”, Izv. AN SSSR, Ser. math., 23 (1959) (in Russian) ; Selected works, 366–371 | Zbl

[4] Zeckendorf E., “Reprśentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas”, Bull. Soc. R. Sci. Liège, 41 (1972), 179–182 (in French) | MR | Zbl

[5] Dickson L. E., History of the theory of numbers, Ch. 17, Carnegie Inst. of Washigton, 1919 | MR

[6] Arkhipov G. I., Sadovnichii V. A., Chubarikov V. N., Lectures on mathematical analysis, Drofa, M., 2006, 640 pp.

[7] Cassels J. W. S., An introduction to Diophantine approximation, Cambridge University Press, 1961, 212 pp. | MR

[8] Hall M.,Jr., Combinatorial theory, Blaisdell Publ. Comp., Waltham (Massachusetts)-Toronto-London, 1970, 424 pp. | MR | MR

[9] Bernoulli D., “Combinatorial theory”, Comment. Acad.Sci. Petrop., 3 (1728), 85–100

[10] Knuth D. E., The art computer programming. Fundamental algorithms, Third Ed., Addison Wesley Longman, Inc., Reading, Massachusetts-Harlow, England-Menlo Park, California-Berkley, california-Lon Mills, Ontario-Sidney-Bonn-Amsterdam-Tokyo-Mexico City, 1998, 720 pp. | MR

[11] de Moivre A., Philos. Trans., 32 (1922), 162–178

[12] Chebyshev P. L., The theory of probabilities, §23, AN SSSR, 1936, 143–147 (in Russian)

[13] Landau E., Fundamentals of analysis, Inostr. literatura, M., 1947 (in Russian)

[14] Golubov B. I., Efimov A. V., Skvortsov V. A., Series and the Uolsh's transformations: the theory and applications, Nauka, M., 1987, 344 pp. (in Russian) | MR

[15] Mineev M. P., Chubarikov V. N., Lectures on arithmetical questions of cryptography, LLC “Luch”, M., 2014, 224 pp. (in Russian)

[16] Ghyasi A. H., “A generalization of the Gel'fond theorem concerning number systems”, Russian Journal of Mathematical Physics, 14:3 (2007), 370 | DOI | MR | Zbl

[17] Ghyasi A. K., Mihaylov I. P., Chubarikov V. N., “On the expansion of real numbers over some sequences”, Chebyshevskii Sbornik, 23:3 (2022), 50–60 | DOI | MR | Zbl

[18] Ghyasi A. K., Mihaylov I. P., Chubarikov V. N., “On the uniform distribution of remainders in the expansion of real numbers over the multiplicative system of numbers”, Chebyshevskii Sbornik, 23:5 (2022), 38–44 | DOI | MR | Zbl

[19] Ghyasi A. K., Mihaylov I. P., Chubarikov V. N., “On the expansion of real numbers over the Fibonacci sequence”, Chebyshevskii Sbornik, 24:2 (2023), 247–253 | MR