On the sequence of fractional parts of the ratio of Fibonacci numbers $x_{n+1}=\left\{\frac{F_{n+1}}{F_n}x_n\right\}$
Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 242-250

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper for the expension of real numbers on Fibonacci sequence theorems on the uniform distribution of remainders for almost of all real numbers in the sense of Lebesgue's measure. the conclusion of this theorem is based on the Weyl's criteria of the uniform distribution of a sequence modulo unit and on the lemma.
Keywords: the Fibonacci's sequence, H.Weyl's criteria, lemma of Borel – Kantelli.
@article{CHEB_2023_24_3_a12,
     author = {A. Kh. Ghiyasi and I. P. Mikhailov and V. N. Chubarikov},
     title = {On the sequence of fractional parts of the ratio of {Fibonacci} numbers $x_{n+1}=\left\{\frac{F_{n+1}}{F_n}x_n\right\}$},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {242--250},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a12/}
}
TY  - JOUR
AU  - A. Kh. Ghiyasi
AU  - I. P. Mikhailov
AU  - V. N. Chubarikov
TI  - On the sequence of fractional parts of the ratio of Fibonacci numbers $x_{n+1}=\left\{\frac{F_{n+1}}{F_n}x_n\right\}$
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 242
EP  - 250
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a12/
LA  - ru
ID  - CHEB_2023_24_3_a12
ER  - 
%0 Journal Article
%A A. Kh. Ghiyasi
%A I. P. Mikhailov
%A V. N. Chubarikov
%T On the sequence of fractional parts of the ratio of Fibonacci numbers $x_{n+1}=\left\{\frac{F_{n+1}}{F_n}x_n\right\}$
%J Čebyševskij sbornik
%D 2023
%P 242-250
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a12/
%G ru
%F CHEB_2023_24_3_a12
A. Kh. Ghiyasi; I. P. Mikhailov; V. N. Chubarikov. On the sequence of fractional parts of the ratio of Fibonacci numbers $x_{n+1}=\left\{\frac{F_{n+1}}{F_n}x_n\right\}$. Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 242-250. http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a12/