Complex valued approach to the system of non-linear second order Boundary value problem and multivalued mapping via fixed point method
Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 212-227.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main aim of this manuscript is to work on the application part of CVMS. In this work we have demonstrated some common fixed results and then we deal primarily with two parts of applications, part(I) Complex valued version of existence and common solution for second order nonlinear boundary value problem using greens function, \begin{equation} \nonumber \begin{cases} \mu''(x)= Im (x, \mu(x), \mu'(x)),\text{when } x\in [ 0, \intercal], \intercal >0\\ \mu(x_1)= \mu_1, \\ \mu(x_2)=\mu_2 ,\text{when } x_1, x_2 \in [ 0, \intercal]. \end{cases} \end{equation} part(II) Application of fixed point results for multivalued mapping in setting of CVMS without using notion of continuity. Eventually several equivalent results and examples are presented to sustain our Main result.
Keywords: Complex valued metric space (CVMS), Common fixed point, Boundary value Problem, Cauchy sequence, Multivalued Mapping, g.l.b. property, Contractive condition and completeness.
@article{CHEB_2023_24_3_a10,
     author = {S. R. Shinde},
     title = {Complex valued approach to the system of non-linear second order {Boundary} value problem and multivalued mapping via fixed point method},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {212--227},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a10/}
}
TY  - JOUR
AU  - S. R. Shinde
TI  - Complex valued approach to the system of non-linear second order Boundary value problem and multivalued mapping via fixed point method
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 212
EP  - 227
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a10/
LA  - en
ID  - CHEB_2023_24_3_a10
ER  - 
%0 Journal Article
%A S. R. Shinde
%T Complex valued approach to the system of non-linear second order Boundary value problem and multivalued mapping via fixed point method
%J Čebyševskij sbornik
%D 2023
%P 212-227
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a10/
%G en
%F CHEB_2023_24_3_a10
S. R. Shinde. Complex valued approach to the system of non-linear second order Boundary value problem and multivalued mapping via fixed point method. Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 212-227. http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a10/

[1] S. Banach, “Sur les operations dans les ensembles abstraits et leurs application aux equations integrales”, Fund. Math., 1922, no. 3, 133–181

[2] L.B. Ciric, “A generalization of Banach's contraction principle”, Proc. Amer.Math. Soc., 45 (1974), 267–273

[3] T. Dosenovic, D. Rakic, B. Caric, S. Radenovic, “Multivalued generalizations of fixed point results in fuzzy metric spaces”, Nonlinear Anal. Model. Control, 21 (2016), 211–222

[4] W.Shatanawi,V.Rajic, S.Radenovic, Al-Rawashdeh, “Mizoguchi-Takahashi-type theorem in tvs-cone metric spaces”, Fixed Point Theory Appl., 2012

[5] Azam A., Fisher B., Khan M., “Common fixed point theorems in complex valued metric spaces”, Numer. Funct. Anal. Optim., 32 (2011), 243–253 | Zbl

[6] Rouzkard F., Imdad M., “Some common fixed point theorems on complex valued metric spaces”, Computers Mathematics with Applications, 64 (2012), 1866–1874

[7] Ahmad J., Klin-eam Ch., Azam A., “Common fixed points for multivalued mappings in complex valued metric spaces with applications”, Abstract and Applied Analysis, 2013, 1–12

[8] “Common fixed point theorems for multi-valued mappings in complex-valued metric spaces”, Journal of Inequalities and Applications, 2013, no. 1, 578 Azam A., Ahmad J., Kumam P. | Zbl

[9] Das B., Gupta S., “An extension of Banach contraction principle through rational expression”, Indian J. Pure Appl. Math., 6 (1975), 1455–1458 | Zbl

[10] Klin-eam Ch., Suanoom Ch., “Some common fixed-point theorems for generalized contractive mappings on complex-valued metric spaces”, Abstr. Appl. Anal., 2013

[11] Kutbi M., Ahmad J., Azam A., Al-Rawashdeh A., “Generalized common fixed point results via greatest lower bound property”, J. Appl. Math., 2014, 1–11

[12] Sintunavarat W., Kumam P., “Generalized common fixed point theorems in complex valued metric spaces and applications”, J.Inequal. Appl., 2012, 1–12

[13] Sintunavarat W., Zada M., Sarwar M., “Common solution of Urysohn integral equations with the help of common fixed point results in complex valued metric spaces”, Rev. R. Acad.Exactas F {\i}s. Nat. Ser. A Mat. RACSAM, 111 (2017), 531–545 | Zbl

[14] Sintunavarat W., Cho Y., Kumam P., “Urysohn integral equations approach by common fixed points in complex valued metric spaces”, Adv. Difference Equ., 2013, 1–14

[15] Jamshaid A., Klin E., Azam A., “Common fixed point for Multivalued mappings in complex valued metric space with Application”, Abstract and Applied Analysis Vol., 2013, 854965, 12 pp.

[16] Lakshmikantham V., Mohapatra R., Theory of Fuzzy Differential Equations and Inclusions, Taylor Francis, Ltd., London, 2003

[17] Puri M., Ralescu D., “Fuzzy random variables”, J. Math. Anal. Appl., 114 (1986), 409–422 | Zbl

[18] Nashine H.K., Vetro C., Kumam W. et al., “Fixed point theorems for fuzzy mappings and applications to ordinary fuzzy differential equations”, Adv. Difference Equ., 2014, 1–14