Complex valued approach to the system of non-linear second order Boundary value problem and multivalued mapping via fixed point method
Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 212-227

Voir la notice de l'article provenant de la source Math-Net.Ru

The main aim of this manuscript is to work on the application part of CVMS. In this work we have demonstrated some common fixed results and then we deal primarily with two parts of applications, part(I) Complex valued version of existence and common solution for second order nonlinear boundary value problem using greens function, \begin{equation} \nonumber \begin{cases} \mu''(x)= Im (x, \mu(x), \mu'(x)),\text{when } x\in [ 0, \intercal], \intercal >0\\ \mu(x_1)= \mu_1, \\ \mu(x_2)=\mu_2 ,\text{when } x_1, x_2 \in [ 0, \intercal]. \end{cases} \end{equation} part(II) Application of fixed point results for multivalued mapping in setting of CVMS without using notion of continuity. Eventually several equivalent results and examples are presented to sustain our Main result.
Keywords: Complex valued metric space (CVMS), Common fixed point, Boundary value Problem, Cauchy sequence, Multivalued Mapping, g.l.b. property, Contractive condition and completeness.
@article{CHEB_2023_24_3_a10,
     author = {S. R. Shinde},
     title = {Complex valued approach to the system of non-linear second order {Boundary} value problem and multivalued mapping via fixed point method},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {212--227},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a10/}
}
TY  - JOUR
AU  - S. R. Shinde
TI  - Complex valued approach to the system of non-linear second order Boundary value problem and multivalued mapping via fixed point method
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 212
EP  - 227
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a10/
LA  - en
ID  - CHEB_2023_24_3_a10
ER  - 
%0 Journal Article
%A S. R. Shinde
%T Complex valued approach to the system of non-linear second order Boundary value problem and multivalued mapping via fixed point method
%J Čebyševskij sbornik
%D 2023
%P 212-227
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a10/
%G en
%F CHEB_2023_24_3_a10
S. R. Shinde. Complex valued approach to the system of non-linear second order Boundary value problem and multivalued mapping via fixed point method. Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 212-227. http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a10/