Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_3_a10, author = {S. R. Shinde}, title = {Complex valued approach to the system of non-linear second order {Boundary} value problem and multivalued mapping via fixed point method}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {212--227}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a10/} }
TY - JOUR AU - S. R. Shinde TI - Complex valued approach to the system of non-linear second order Boundary value problem and multivalued mapping via fixed point method JO - Čebyševskij sbornik PY - 2023 SP - 212 EP - 227 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a10/ LA - en ID - CHEB_2023_24_3_a10 ER -
%0 Journal Article %A S. R. Shinde %T Complex valued approach to the system of non-linear second order Boundary value problem and multivalued mapping via fixed point method %J Čebyševskij sbornik %D 2023 %P 212-227 %V 24 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a10/ %G en %F CHEB_2023_24_3_a10
S. R. Shinde. Complex valued approach to the system of non-linear second order Boundary value problem and multivalued mapping via fixed point method. Čebyševskij sbornik, Tome 24 (2023) no. 3, pp. 212-227. http://geodesic.mathdoc.fr/item/CHEB_2023_24_3_a10/
[1] S. Banach, “Sur les operations dans les ensembles abstraits et leurs application aux equations integrales”, Fund. Math., 1922, no. 3, 133–181
[2] L.B. Ciric, “A generalization of Banach's contraction principle”, Proc. Amer.Math. Soc., 45 (1974), 267–273
[3] T. Dosenovic, D. Rakic, B. Caric, S. Radenovic, “Multivalued generalizations of fixed point results in fuzzy metric spaces”, Nonlinear Anal. Model. Control, 21 (2016), 211–222
[4] W.Shatanawi,V.Rajic, S.Radenovic, Al-Rawashdeh, “Mizoguchi-Takahashi-type theorem in tvs-cone metric spaces”, Fixed Point Theory Appl., 2012
[5] Azam A., Fisher B., Khan M., “Common fixed point theorems in complex valued metric spaces”, Numer. Funct. Anal. Optim., 32 (2011), 243–253 | Zbl
[6] Rouzkard F., Imdad M., “Some common fixed point theorems on complex valued metric spaces”, Computers Mathematics with Applications, 64 (2012), 1866–1874
[7] Ahmad J., Klin-eam Ch., Azam A., “Common fixed points for multivalued mappings in complex valued metric spaces with applications”, Abstract and Applied Analysis, 2013, 1–12
[8] “Common fixed point theorems for multi-valued mappings in complex-valued metric spaces”, Journal of Inequalities and Applications, 2013, no. 1, 578 Azam A., Ahmad J., Kumam P. | Zbl
[9] Das B., Gupta S., “An extension of Banach contraction principle through rational expression”, Indian J. Pure Appl. Math., 6 (1975), 1455–1458 | Zbl
[10] Klin-eam Ch., Suanoom Ch., “Some common fixed-point theorems for generalized contractive mappings on complex-valued metric spaces”, Abstr. Appl. Anal., 2013
[11] Kutbi M., Ahmad J., Azam A., Al-Rawashdeh A., “Generalized common fixed point results via greatest lower bound property”, J. Appl. Math., 2014, 1–11
[12] Sintunavarat W., Kumam P., “Generalized common fixed point theorems in complex valued metric spaces and applications”, J.Inequal. Appl., 2012, 1–12
[13] Sintunavarat W., Zada M., Sarwar M., “Common solution of Urysohn integral equations with the help of common fixed point results in complex valued metric spaces”, Rev. R. Acad.Exactas F {\i}s. Nat. Ser. A Mat. RACSAM, 111 (2017), 531–545 | Zbl
[14] Sintunavarat W., Cho Y., Kumam P., “Urysohn integral equations approach by common fixed points in complex valued metric spaces”, Adv. Difference Equ., 2013, 1–14
[15] Jamshaid A., Klin E., Azam A., “Common fixed point for Multivalued mappings in complex valued metric space with Application”, Abstract and Applied Analysis Vol., 2013, 854965, 12 pp.
[16] Lakshmikantham V., Mohapatra R., Theory of Fuzzy Differential Equations and Inclusions, Taylor Francis, Ltd., London, 2003
[17] Puri M., Ralescu D., “Fuzzy random variables”, J. Math. Anal. Appl., 114 (1986), 409–422 | Zbl
[18] Nashine H.K., Vetro C., Kumam W. et al., “Fixed point theorems for fuzzy mappings and applications to ordinary fuzzy differential equations”, Adv. Difference Equ., 2014, 1–14