Explicit constructions of extensions of complete fields of characteristic $0$
Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 179-196
Voir la notice de l'article provenant de la source Math-Net.Ru
This survey article is devoted to $p$-extensions of complete discrete valuation fields of mixed characteristic where $p$ is the characteristic of the residue field. It is known that any totally ramified Galois extension with a non-maximal ramification jump can be determined by an Artin-Schreier equation, and the upper bound for the ramification jump corresponds to the lower bound of the valuation in the right-hand side of the equation. The problem of construction of extensions with arbitrary Galois groups is not solved.
Keywords:
discrete valuation field, ramification jump, Artin-Schreier equation.
@article{CHEB_2023_24_2_a8,
author = {I. B. Zhukov and O. Yu. Ivanova},
title = {Explicit constructions of extensions of complete fields of characteristic $0$},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {179--196},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a8/}
}
TY - JOUR AU - I. B. Zhukov AU - O. Yu. Ivanova TI - Explicit constructions of extensions of complete fields of characteristic $0$ JO - Čebyševskij sbornik PY - 2023 SP - 179 EP - 196 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a8/ LA - ru ID - CHEB_2023_24_2_a8 ER -
I. B. Zhukov; O. Yu. Ivanova. Explicit constructions of extensions of complete fields of characteristic $0$. Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 179-196. http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a8/