On an expansion numbers on Fibonacci's sequences
Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 248-255.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper theorems on the expression of real numbers on Fibonacci sequence. It pay a special attention to “explicit formulas” and conditions of the uniqueness of such representations. We note that unifiing of an expression of a real number over inverse values of a multiplicaticative system permits to get the estimation of the form $$ e-\sum_{k=0}^n\frac 1{k!}=\frac{x_n}{n!}, \frac 1{n+1}\leq x_n\frac 1n. $$ Expressions of numbers over the sequence of inverse of Fibonacci numbers essentially uses these representation throw powers of “the gold section” $\varphi=\frac{1+\sqrt 5}{2}.$
Keywords: the Fibonacci's sequence.
@article{CHEB_2023_24_2_a12,
     author = {A. Kh. Ghiyasi and I. P. Mikhailov and V. N. Chubarikov},
     title = {On an expansion numbers on {Fibonacci's} sequences},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {248--255},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a12/}
}
TY  - JOUR
AU  - A. Kh. Ghiyasi
AU  - I. P. Mikhailov
AU  - V. N. Chubarikov
TI  - On an expansion numbers on Fibonacci's sequences
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 248
EP  - 255
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a12/
LA  - ru
ID  - CHEB_2023_24_2_a12
ER  - 
%0 Journal Article
%A A. Kh. Ghiyasi
%A I. P. Mikhailov
%A V. N. Chubarikov
%T On an expansion numbers on Fibonacci's sequences
%J Čebyševskij sbornik
%D 2023
%P 248-255
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a12/
%G ru
%F CHEB_2023_24_2_a12
A. Kh. Ghiyasi; I. P. Mikhailov; V. N. Chubarikov. On an expansion numbers on Fibonacci's sequences. Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 248-255. http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a12/

[1] Hardy G. H., Littlewood J. E., “The fractional part of $n^k\theta$”, Acta math., 37 (1914) | MR

[2] Borel E., “Les probabilités dénombarables et leurs applications arithmétiques”, Rend Circolo math. Palermo, 27 (1909); Избр.тр., 366–371

[3] Gel'fond A. O., “On one general property of numerical system"”, Izv. AN SSSR, Ser. math., 23 (1959) (in Russian) ; Selected works, 366–371 | Zbl

[4] Zeckendorf E., “Reprśentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas”, Bull. Soc. R. Sci. Liège, 41 (1972), 179–182 (in French) | MR | Zbl

[5] Dickson L. E., History of the theory of numbers, Ch. 17, Carnegie Inst. of Washigton, 1919 | MR

[6] Arkhipov G. I., Sadovnichii V. A., Chubarikov V. N., Lectures on mathematical analysis, Drofa, M., 2006, 640 pp.

[7] Cassels J. W. S, An introduction to Diophantine approximation, Cambridge University Press, 1961, 212 pp. | MR

[8] Hall M. Jr, Combinatorial theory, Blaisdell Publ. Comp., Waltham (Massachusetts)-Toronto-London, 1970, 424 pp. | MR | MR

[9] Bernoulli D., “Combinatorial theory”, Comment. Acad.Sci. Petrop., 3 (1728), 85–100

[10] Knuth D. E., The art computer programming. Fundamental algorithms, Third Ed., Addison Wesley Longman, Inc., Reading, Massachusetts-Harlow, England-Menlo Park, California-Berkley, California-Lon Mills, Ontario-Sidney-Bonn-Amsterdam-Tokyo-Mexico City, 1998, 720 pp. | MR

[11] de Moivre A., Philos. Trans., 32 (1922), 162–178

[12] Chebyshev P. L., The theory of probabilities, §23, AN SSSR, 1936, 143–147 (in Russian)

[13] Landau E., Fundamentals of analysis, Inostr. literature, M., 1947 (in Russian)

[14] Golubov B. I., Efimov A. V., Skvortsov V. A., Series and the Uolsh's transformations: the theory and applications, Nauka, M., 1987, 344 pp. (in Russian) | MR

[15] Mineev M. P., Chubarikov V. N., Lectures on arithmetical questions of cryptography, OOO“Luch”, M., 2014, 224 pp. (in Russian)

[16] Ghyasi A. H., “A generalization of the Gel'fond theorem concerning number systems”, Russian Journal of Mathematical Physics, 14:3 (2007), 370 | DOI | MR | Zbl