On an expansion numbers on Fibonacci's sequences
Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 248-255
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper theorems on the expression of real numbers on Fibonacci sequence. It pay a special attention to “explicit formulas” and conditions of the uniqueness of such representations. We note that unifiing of an expression of a real number over inverse values of a multiplicaticative system permits to get the estimation of the form $$ e-\sum_{k=0}^n\frac 1{k!}=\frac{x_n}{n!}, \frac 1{n+1}\leq x_n\frac 1n. $$ Expressions of numbers over the sequence of inverse of Fibonacci numbers essentially uses these representation throw powers of “the gold section” $\varphi=\frac{1+\sqrt 5}{2}.$
Keywords:
the Fibonacci's sequence.
@article{CHEB_2023_24_2_a12,
author = {A. Kh. Ghiyasi and I. P. Mikhailov and V. N. Chubarikov},
title = {On an expansion numbers on {Fibonacci's} sequences},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {248--255},
publisher = {mathdoc},
volume = {24},
number = {2},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a12/}
}
TY - JOUR AU - A. Kh. Ghiyasi AU - I. P. Mikhailov AU - V. N. Chubarikov TI - On an expansion numbers on Fibonacci's sequences JO - Čebyševskij sbornik PY - 2023 SP - 248 EP - 255 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a12/ LA - ru ID - CHEB_2023_24_2_a12 ER -
A. Kh. Ghiyasi; I. P. Mikhailov; V. N. Chubarikov. On an expansion numbers on Fibonacci's sequences. Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 248-255. http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a12/