On an expansion numbers on Fibonacci's sequences
Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 248-255

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper theorems on the expression of real numbers on Fibonacci sequence. It pay a special attention to “explicit formulas” and conditions of the uniqueness of such representations. We note that unifiing of an expression of a real number over inverse values of a multiplicaticative system permits to get the estimation of the form $$ e-\sum_{k=0}^n\frac 1{k!}=\frac{x_n}{n!}, \frac 1{n+1}\leq x_n\frac 1n. $$ Expressions of numbers over the sequence of inverse of Fibonacci numbers essentially uses these representation throw powers of “the gold section” $\varphi=\frac{1+\sqrt 5}{2}.$
Keywords: the Fibonacci's sequence.
@article{CHEB_2023_24_2_a12,
     author = {A. Kh. Ghiyasi and I. P. Mikhailov and V. N. Chubarikov},
     title = {On an expansion numbers on {Fibonacci's} sequences},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {248--255},
     publisher = {mathdoc},
     volume = {24},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a12/}
}
TY  - JOUR
AU  - A. Kh. Ghiyasi
AU  - I. P. Mikhailov
AU  - V. N. Chubarikov
TI  - On an expansion numbers on Fibonacci's sequences
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 248
EP  - 255
VL  - 24
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a12/
LA  - ru
ID  - CHEB_2023_24_2_a12
ER  - 
%0 Journal Article
%A A. Kh. Ghiyasi
%A I. P. Mikhailov
%A V. N. Chubarikov
%T On an expansion numbers on Fibonacci's sequences
%J Čebyševskij sbornik
%D 2023
%P 248-255
%V 24
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a12/
%G ru
%F CHEB_2023_24_2_a12
A. Kh. Ghiyasi; I. P. Mikhailov; V. N. Chubarikov. On an expansion numbers on Fibonacci's sequences. Čebyševskij sbornik, Tome 24 (2023) no. 2, pp. 248-255. http://geodesic.mathdoc.fr/item/CHEB_2023_24_2_a12/