Partially-isospectral Sturm--Liouville boundary value problems on the finite segment
Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 104-113

Voir la notice de l'article provenant de la source Math-Net.Ru

In paper, an algorithm is proposed for constructing isospectral and partially-isospectral Sturm–Liouville boundary value problems on the finite segment.
Keywords: Sturm–Liouville problem, eigenvalues, normalizing constants, spectral data, inverse spectral problem, integral equation, partially-isospectral operators.
@article{CHEB_2023_24_1_a7,
     author = {O. E. Mirzaev},
     title = {Partially-isospectral {Sturm--Liouville} boundary value problems on the finite segment},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {104--113},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a7/}
}
TY  - JOUR
AU  - O. E. Mirzaev
TI  - Partially-isospectral Sturm--Liouville boundary value problems on the finite segment
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 104
EP  - 113
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a7/
LA  - ru
ID  - CHEB_2023_24_1_a7
ER  - 
%0 Journal Article
%A O. E. Mirzaev
%T Partially-isospectral Sturm--Liouville boundary value problems on the finite segment
%J Čebyševskij sbornik
%D 2023
%P 104-113
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a7/
%G ru
%F CHEB_2023_24_1_a7
O. E. Mirzaev. Partially-isospectral Sturm--Liouville boundary value problems on the finite segment. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 104-113. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a7/