Analytical substantiation of the gyroscopic effect in the works of ~O.~I.~Somov
Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 304-312

Voir la notice de l'article provenant de la source Math-Net.Ru

Since the beginning of the XIX century in European countries (Germany, France, Belgium, Austria) astronomers, engineers, mechanics invented, created and improved gyroscopes. The practical demand for gyroscope devices has been significant, but there has not yet been a specific theory of the gyroscope. The foundation of the theory was laid by Euler, developed by Lagrange, and continued by Poisson. On the other hand, in the 19th century in the works of Jacobi, Abel, Weierstrass, the theory of elliptic functions was created and began to develop. Based on this theory, K. Jacobi and O.I. Somov created a special theory of the gyroscope.
Keywords: Gyroscope, elliptic function, Euler, Lagrange, Jacobi, Somov.
@article{CHEB_2023_24_1_a23,
     author = {A. O. Yulina},
     title = {Analytical substantiation of the gyroscopic effect in the works of {~O.~I.~Somov}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {304--312},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a23/}
}
TY  - JOUR
AU  - A. O. Yulina
TI  - Analytical substantiation of the gyroscopic effect in the works of ~O.~I.~Somov
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 304
EP  - 312
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a23/
LA  - ru
ID  - CHEB_2023_24_1_a23
ER  - 
%0 Journal Article
%A A. O. Yulina
%T Analytical substantiation of the gyroscopic effect in the works of ~O.~I.~Somov
%J Čebyševskij sbornik
%D 2023
%P 304-312
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a23/
%G ru
%F CHEB_2023_24_1_a23
A. O. Yulina. Analytical substantiation of the gyroscopic effect in the works of ~O.~I.~Somov. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 304-312. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a23/