Analytical substantiation of the gyroscopic effect in the works of ~O.~I.~Somov
Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 304-312.

Voir la notice de l'article provenant de la source Math-Net.Ru

Since the beginning of the XIX century in European countries (Germany, France, Belgium, Austria) astronomers, engineers, mechanics invented, created and improved gyroscopes. The practical demand for gyroscope devices has been significant, but there has not yet been a specific theory of the gyroscope. The foundation of the theory was laid by Euler, developed by Lagrange, and continued by Poisson. On the other hand, in the 19th century in the works of Jacobi, Abel, Weierstrass, the theory of elliptic functions was created and began to develop. Based on this theory, K. Jacobi and O.I. Somov created a special theory of the gyroscope.
Keywords: Gyroscope, elliptic function, Euler, Lagrange, Jacobi, Somov.
@article{CHEB_2023_24_1_a23,
     author = {A. O. Yulina},
     title = {Analytical substantiation of the gyroscopic effect in the works of {~O.~I.~Somov}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {304--312},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a23/}
}
TY  - JOUR
AU  - A. O. Yulina
TI  - Analytical substantiation of the gyroscopic effect in the works of ~O.~I.~Somov
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 304
EP  - 312
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a23/
LA  - ru
ID  - CHEB_2023_24_1_a23
ER  - 
%0 Journal Article
%A A. O. Yulina
%T Analytical substantiation of the gyroscopic effect in the works of ~O.~I.~Somov
%J Čebyševskij sbornik
%D 2023
%P 304-312
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a23/
%G ru
%F CHEB_2023_24_1_a23
A. O. Yulina. Analytical substantiation of the gyroscopic effect in the works of ~O.~I.~Somov. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 304-312. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a23/

[1] A. O. Yulina, D. V. Borodin, “About the work of I.V. Meshchersky in the field of gyroscopic stabilization of a monorail car"”, History of Science and Technology, 2020, no. 4, 45–52

[2] O. I. Somov, Foundations of the theory of elliptic functions, AN, St. Petersburg, 1850, 250 pp.

[3] A. O. Yulina, “On the history of the problem of rotation of a rigid body around a fixed point in the case of an initial impact"”, History of science and technology, 2021, no. 12, 03–08

[4] J. Somoff, “Solution rigoureuse du problème de la rotation autour d'un point fixe d'un corps solide pesant, lorsque ce corps a deux moments d'inertie principaux égaux"\ldots”, Bulletin de la Classe Physico-Mathematique de l'Academie Imperiale des Sciences de Saint-Petersbourg, XIV (1855), 115–136

[5] F. Klein, Mathematical theory of the top, M.–Izhevsk, 2003, 70 pp.

[6] Euler L., “Du mouvement de rotation des corps solides autour d'un axe variable”, Mémoires de l'académie des sciences de Berlin, XIV, 1765, 154–193

[7] Lagrange J.L., Mécanique analytique, Ve Courcier, Paris, 1811, 15 pp. | MR

[8] Poinsot L., Éléments de statique, à l'usage des lycées, Mémoire sur la composition des moments et des aires, Nouv. éd. par L. Poinsot; nouv. éd., Volland l'aîné et le jeune, Paris, 1811, 301 pp.

[9] S.V. Kovalevskaya, Scientific works, AN USSR, 1948, 153 pp.