Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2023_24_1_a1, author = {K. V. Budiyanskaya and I. B. Kozhukhov}, title = {Congruences of a free unar}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {15--26}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a1/} }
K. V. Budiyanskaya; I. B. Kozhukhov. Congruences of a free unar. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 15-26. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a1/
[1] Kilp M., Knauer U., Mikhalev A.V., Monoids, acts and categories, W. de Gruyter, N.Y. – Berlin, 2000, xvii+529 pp. | MR | Zbl
[2] Plotkin B.I., Gringlaz L.Ya., Gvaramiya A.A., Elements of the algebraic theory of automata, Higher School, M., 1994, 191 pp.
[3] Avdeyev A. Yu., Kozhukhov I. B., “Acts over completely 0-simple semigroups”, Acta Cybernetica, 14:4 (2000), 523–531 | MR | Zbl
[4] Ohemke R. H, “Congruences and semisiplicity for Rees matrix semigroups”, Pacif. J. Math., 54:2 (1974), 143–164 | DOI | MR
[5] Khaliullina A.,R, “Congruences of polygons over semigroups of right zeros”, Chebyshevskii Sbornik, 14:3 (2013), 142–146 | Zbl
[6] Khaliullina A.R., “Congruences of polygons over groups”, Izv. Sarat. un-ta. Nov. ser. Ser. Mathematics. Mechanics. Computer Science, 13:4(2) (2013), 133–137 | Zbl
[7] Egorova D. P, “The structure of congruences of unary algebra”, Ordered Sets and lattices, 5, 1978, 11–44 | Zbl