Congruences of a free unar
Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 15-26

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain a complete description of all congruences of a free unar with arbitrary set of free generators. Namely, every congruence is characterized uniquely by a collection of parameters which are either non-negative integers or the symbol $\infty$; the restrictions on the parameters are formulated.
Keywords: act over senigroup, unar, congruence.
@article{CHEB_2023_24_1_a1,
     author = {K. V. Budiyanskaya and I. B. Kozhukhov},
     title = {Congruences of a free unar},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {15--26},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a1/}
}
TY  - JOUR
AU  - K. V. Budiyanskaya
AU  - I. B. Kozhukhov
TI  - Congruences of a free unar
JO  - Čebyševskij sbornik
PY  - 2023
SP  - 15
EP  - 26
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a1/
LA  - ru
ID  - CHEB_2023_24_1_a1
ER  - 
%0 Journal Article
%A K. V. Budiyanskaya
%A I. B. Kozhukhov
%T Congruences of a free unar
%J Čebyševskij sbornik
%D 2023
%P 15-26
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a1/
%G ru
%F CHEB_2023_24_1_a1
K. V. Budiyanskaya; I. B. Kozhukhov. Congruences of a free unar. Čebyševskij sbornik, Tome 24 (2023) no. 1, pp. 15-26. http://geodesic.mathdoc.fr/item/CHEB_2023_24_1_a1/