Entropy for some monoids of natural numbers
Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 57-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

In abstract number theory and its applications to statistical physics, the concept of entropy plays an important role. Since entropy is equal to the logarithm of the distribution function, studying the entropy behavior of a monoid is equivalent to solving the inverse problem for this monoid. The paper considers questions about the asymptotics of entropy for some monoids of natural numbers and monoids of natural numbers with a weight function. First, the problem is solved for two monoids of the geometric progression type. Secondly, the results obtained with respect to entropy for monoids with an arbitrary exponential sequence of primes of type $q$ are based on the solution of the inverse problem for monoids of this type obtained earlier by the authors. To solve this problem, we consider two homomorphisms of the main monoid ${M(\mathbb{P}(q))}$ of type $q$ and the distribution problem reduces to the additive Ingham problem. It is shown that the concept of power density does not work for this class of monoids. A new concept of $C$ logarithmic $\theta$-power density is introduced. It is shown that any monoid ${M(\mathbb{P}(q))}$ for a sequence of pseudo-simple numbers $\mathbb{P}(q)$ of type $q$ has upper and lower bounds for the element distribution function of the main basic monoid ${M(\mathbb{P}(q))}$ of type $q$. It is shown that if $C$ is a logarithmic $\theta$-power density for the main monoid ${M(\mathbb{P}(q))}$ of the type $q$ exists, then $\theta=\frac{1}{2}$ and for the constant $C$ the inequalities are valid $ \pi\sqrt{\frac{1}{3\ln q}}\le C\le \pi\sqrt{\frac{2}{3\ln q}}. $ The results obtained are similar to those previously obtained by the authors when solving the inverse problem for monoids generated by an arbitrary exponential sequence of primes of type $q$. For basic monoids ${M(\mathbb{P}(q))}$ of the type $q$, the question remains open about the existence of a $C$ logarithmic $\frac{1}{2}$-power density and the value of the constant $C$.
Keywords: Riemann zeta function, Dirichlet series, zeta function of the monoid of natural numbers, Euler product, exponential sequence of primes, the basic monoid ${M(\mathbb{P}(q))}$ of type $q$, $C$ logarithmic $\theta$-power density, entropy monoid of natural numbers, entropy monoid of natural numbers with a weight function.
@article{CHEB_2022_23_5_a5,
     author = {N. N. Dobrovolskii and I. Yu. Rebrova and N. M. Dobrovolskii},
     title = {Entropy for some monoids of natural numbers},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {57--71},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a5/}
}
TY  - JOUR
AU  - N. N. Dobrovolskii
AU  - I. Yu. Rebrova
AU  - N. M. Dobrovolskii
TI  - Entropy for some monoids of natural numbers
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 57
EP  - 71
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a5/
LA  - ru
ID  - CHEB_2022_23_5_a5
ER  - 
%0 Journal Article
%A N. N. Dobrovolskii
%A I. Yu. Rebrova
%A N. M. Dobrovolskii
%T Entropy for some monoids of natural numbers
%J Čebyševskij sbornik
%D 2022
%P 57-71
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a5/
%G ru
%F CHEB_2022_23_5_a5
N. N. Dobrovolskii; I. Yu. Rebrova; N. M. Dobrovolskii. Entropy for some monoids of natural numbers. Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 57-71. http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a5/

[1] E. Bomberi, A. Gosh, “Vokrug funktsii Devenporta-Kheilbronna”, UMN, 66:2(398) (2011), 15–66

[2] B. M. Bredikhin, “Ostatochnyi chlen v asimptoticheskoi formule dlya funktsii $\nu_G(x)$”, Izv. vuzov. Matem., 1960, no. 6, 40–49

[3] B. M. Bredikhin, “Elementarnoe reshenie obratnykh zadach o bazisakh svobodnykh polugrupp”, Matem. sb., 50(92):2 (1960), 221–232

[4] B. M. Bredikhin, “Svobodnye chislovye polugruppy so stepennymi plotnostyami”, Dokl. AN SSSR, 118:5 (1958), 855–857

[5] B. M. Bredikhin, “O stepennykh plotnostyakh nekotorykh podmnozhestv svobodnykh polugrupp”, Izv. vuzov. Matem., 1958, no. 3, 24–30

[6] B. M. Bredikhin, “Svobodnye chislovye polugruppy so stepennymi plotnostyami”, Matem. sb., 46(88):2 (1958), 143–158

[7] B. M. Bredikhin, “Primer konechnogo gomomorfizma s ogranichennoi summatornoi funktsiei”, UMN, 11:4(70) (1956), 119–122

[8] B. M. Bredikhin, “Nekotorye voprosy teorii kharakterov kommutativnykh polugrupp”, Trudy 3-go Vsesoyuzn. matem. s'ezda, v. I, Izd. AN SSSR, M., 1956, 3

[9] B. M. Bredikhin, “O summatornykh funktsiyakh kharakterov chislovykh polugrupp”, DAN, 94 (1954), 609–612

[10] B. M. Bredikhin, “O kharakterakh chislovykh polugrupp s dostatochno redkoi bazoi”, DAN, 90 (1953), 707–710

[11] Voronin S. M., Karatsuba A. A., Dzeta-funktsiya Rimana, Fizmatlit, M., 1994, 376 pp.

[12] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968, 618 pp.

[13] Demidov S. S., Morozova E. A., Chubarikov V. N., Rebrova I. Yu., Balaba I. N., Dobrovolskii N. N., Dobrovolskii N. M., Dobrovolskaya L. P., Rodionov A. V., Pikhtilkova O. A., “Teoretiko-chislovoi metod v priblizhennom analize”, Chebyshevskii sb., 18:4 (2017), 6–85

[14] M. N. Dobrovolskii, N. N. Dobrovolskii, N. M. Dobrovolskii, I. B. Kozhukhov, I. Yu. Rebrova, “Monoid proizvedenii dzeta-funktsii monoidov naturalnykh chisel”, Chebyshevckii sbornik, 23:3 (2022), 102–117

[15] N. N. Dobrovolskii, “Dzeta-funktsiya monoidov naturalnykh chisel s odnoznachnym razlozheniem na prostye mnozhiteli”, Chebyshevskii sb., 18:4 (2017), 187–207

[16] Dobrovolskii N. N., “O monoidakh naturalnykh chisel s odnoznachnym razlozheniem na prostye elementy”, Chebyshevskii sb., 19:1 (2018), 79–105

[17] Dobrovolskii N. N., “Dzeta-funktsiya monoidov s zadannoi abstsissoi absolyutnoi skhodimosti”, Chebyshevskii sb., 19:2 (2018), 142–150

[18] Dobrovolskii N. N., “Odna modelnaya dzeta-funktsiya monoida naturalnykh chisel”, Chebyshevckii sbornik, 20:1 (2019), 148–163

[19] N. N. Dobrovolskii, “Ob abstsisse absolyutnoi skhodimosti odnogo klassa obobschennykh proizvedenii Eilera”, Matem. zametki, 109:3 (2021), 464–469

[20] N. N. Dobrovolskii, “Raspredelenie prostykh elementov v nekotorykh monoidakh naturalnykh chisel”, Matem. zametki (to appear)

[21] Dobrovolskii N. N., Dobrovolskii M. N., Dobrovolskii N. M., Balaba I. N., Rebrova I. Yu., “Gipoteza o "zagraditelnom ryade" dlya dzeta-funktsii monoidov s eksponentsialnoi posledovatelnostyu prostykh”, Chebyshevskii sb., 19:1 (2018), 106–123

[22] N. N. Dobrovolskii, M. N. Dobrovolskii, N. M. Dobrovolskii, I. N. Balaba, I. Yu. Rebrova, “Algebra ryadov Dirikhle monoida naturalnykh chisel”, Chebyshevckii sbornik, 20:1 (2019), 180–196

[23] N. N. Dobrovolskii, N. M. Dobrovolskii, I. Yu. Rebrova, A. V. Rodionov, “Monoidy naturalnykh chisel v teoretiko-chislovom metode v priblizhennom analize”, Chebyshevckii sbornik, 20:1 (2019), 164–179

[24] Dobrovolskii N. N., Kalinina A. O., Dobrovolskii M. N., Dobrovolskii N. M., “O kolichestve prostykh elementov v nekotorykh monoidakh naturalnykh chisel”, Chebyshevckii sbornik, 19:2 (2018), 123–141

[25] Dobrovolskii N. N., Kalinina A. O., Dobrovolskii M. N., Dobrovolskii N. M., “O monoide kvadratichnykh vychetov”, Chebyshevckii sbornik, 19:3 (2018), 95–108

[26] N. N. Dobrovolskii, I. Yu. Rebrova, N. M. Dobrovolskii, “Obratnaya zadacha dlya monoida s eksponentsialnoi posledovatelnostyu prostykh”, Chebyshevckii sbornik, 21:1 (2020), 165–185

[27] N. N. Dobrovolskii, I. Yu. Rebrova, N. M. Dobrovolskii, “Obratnaya zadacha dlya osnovnogo monoida tipa $q$”, Chebyshevckii sbornik, 23:4 (2022), 59–71

[28] D. S. Minenkov, V. E. Nazaikinskii, “Zamechanie ob obratnoi teoreme o raspredelenii abstraktnykh prostykh chisel”, Matem. zametki, 100:4 (2016), 627–629

[29] A. G. Postnikov, Vvedenie v analiticheskuyu teoriyu chisel, Nauka, M., 1971, 416 pp.

[30] E. K. Titchmarsh, Teoriya dzeta-funktsii Rimana, IL, M., 1952, 407 pp.

[31] E. Trost, Prostye chisla, Fizmatlit, M., 1959, 136 pp.

[32] Chandrasekkharan K., Vvedenie v analiticheskuyu teoriyu chisel, Mir, M., 1974, 188 pp.

[33] Chudakov N. G., Vvedenie v teoriyu $L$-funktsii Dirikhle, OGIZ, M.–L., 1947, 204 pp.

[34] H. Davenport, H. Heilbronn, “On the zeros of certain Dirichlet series”, J. London Math. Soc., 11 (1936), 181–185

[35] Davenport H., Heilbronn H., “On the zeros of certain Dirichlet series”, J. London Math. Soc., 11 (1936), 181–185