Transmission of spherical sound wave through an elastic plate with an inhomogeneous coating
Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 305-319.

Voir la notice de l'article provenant de la source Math-Net.Ru

In paper the problem of spherical sound wave reflection and transmission through a homogeneous isotropic elastic plate with a continuously inhomogeneous in thickness elastic coating is considered. It is believed that the plate is placed in an infinite ideal fluid, and the incident sound wave is harmonic and is generated by point source. An analytical solution of the posed problem is obtained on the basis of the known solution of the problem about the passage of plane sound waves through plate with a continuously inhomogeneous coating and using integral representation of a spherical wave in the form of an expansion on flat waves. Finding the displacement field in an inhomogeneous layer is reduced to solving boundary value problem for a system of ordinary differential equations of the second order. The results of numerical calculations of frequency characteristics are presented for reflected and transmitted acoustic fields.
Keywords: reflection and transmission of sound, spherical sound wave, homogeneous elastic plate, inhomogeneous coating.
@article{CHEB_2022_23_5_a23,
     author = {L. A. Tolokonnikov and T. S. Nguyen},
     title = {Transmission of spherical sound wave through an elastic plate with an inhomogeneous coating},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {305--319},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a23/}
}
TY  - JOUR
AU  - L. A. Tolokonnikov
AU  - T. S. Nguyen
TI  - Transmission of spherical sound wave through an elastic plate with an inhomogeneous coating
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 305
EP  - 319
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a23/
LA  - ru
ID  - CHEB_2022_23_5_a23
ER  - 
%0 Journal Article
%A L. A. Tolokonnikov
%A T. S. Nguyen
%T Transmission of spherical sound wave through an elastic plate with an inhomogeneous coating
%J Čebyševskij sbornik
%D 2022
%P 305-319
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a23/
%G ru
%F CHEB_2022_23_5_a23
L. A. Tolokonnikov; T. S. Nguyen. Transmission of spherical sound wave through an elastic plate with an inhomogeneous coating. Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 305-319. http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a23/

[1] Tolokonnikov L. A., Yudachev V. V., “Otrazhenie i prelomlenie ploskoi zvukovoi volny uprugim ploskim sloem s neodnorodnym pokrytiem”, Izvestiya Tulskogo gos. un-ta. Estestvennye nauki, 2015, no. 3, 219–226

[2] Larin N. V., Skobeltsyn S. A., Tolokonnikov L. A., “Modelirovanie neodnorodnogo pokrytiya uprugoi plastiny s optimalnymi zvukootrazhayuschimi svoistvami”, Prikladnaya matematika i mekhanika, 80:4 (2016), 480–488

[3] Larin N. V., “Opredelenie zakonov neodnorodnosti pokrytiya termouprugoi plastiny, obespechivayuschikh naimenshee zvukootrazhenie”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2016, no. 11-2, 216–234

[4] Tolokonnikov L. A., Nguen T. Sh., “O vliyanii neodnorodnogo pokrytiya uprugoi plastiny na otrazhenie i prokhozhdenie zvuka”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2018, no. 6, 362–372

[5] Tolokonnikov L. A., Nguen T. Sh., “Prokhozhdenie zvuka cherez upruguyu plastinu s neodnorodnym pokrytiem, granichaschuyu s vyazkimi zhidkostyami”, Chebyshevckii sbornik, 20:2 (2019), 289–302

[6] Nguen T. Sh., “Ob otrazhenii i prokhozhdenii ploskoi zvukovoi volny cherez upruguyu plastinu s neodnorodnym pokrytiem, granichaschuyu s vyazkimi zhidkostyami”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2021, no. 5, 404–414

[7] Skobeltsyn S. A., “Otsenka svoistv pokrytiya konechnoi uprugoi plastiny s polostyu, obespechivayuschikh zadannye parametry otrazheniya zvuka”, Izvestiya Tulskogo gos. un-ta. Tekhnicheskie nauki, 2017, no. 7, 83–92

[8] Tolokonnikov L. A., Tolokonnikov S. L., “Otrazhenie i prelomlenie ploskoi zvukovoi volny uprugoi plastinoi s neodnorodnym anizotropnym pokrytiem”, Chebyshevckii sbornik, 22:3 (2021), 423–437

[9] Tolokonnikov L. A., Nguen T. Sh., “Otrazhenie i prokhozhdenie tsilindricheskoi zvukovoi volny cherez upruguyu plastinu s neodnorodnym pokrytiem”, Chebyshevckii sbornik, 23:1 (2022), 312–327

[10] Piquette J. C., “Spherical-wave scattering by a finite-thickness solid plate of infinite lateral extent, with some implications for panel measurements”, J. Acoust. Soc. Am., 83:4 (1988), 1284–1294

[11] Shushkevich G. Ch., Kiseleva N. N., “Ekranirovanie zvukovogo polya ploskim uprugim sloem i tonkoi nezamknutoi sfericheskoi obolochkoi”, Informatika, 2014, no. 2, 36–47

[12] Shenderov E. A., Volnovye zadachi gidroakustiki, Sudostroenie, L., 1972, 352 pp.

[13] Novatskii V., Teoriya uprugosti, Mir, M., 1975, 872 pp.

[14] Brekhovskikh L. M., Volny v sloistykh sredakh, Nauka, M., 1973, 344 pp.

[15] Tolokonnikov L. A., Nguen T. Sh., “Opredelenie polya smeschenii neodnorodnogo pokrytiya uprugoi plastiny pri prokhozhdenii cherez nee ploskoi zvukovoi volny”, Chebyshevckii sbornik, 21:1 (2020), 310–321