On the number of lattice points of linear comparison solutions in rectangular areas
Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 130-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the theory of the hyperbolic zeta function of lattices, a significant role is played by the Bakhvalov theorem, in which the magnitude of the zeta function of the lattice of linear comparison solutions is estimated through the hyperbolic lattice parameter. In N. M. Korobov's 1963 monograph, this theorem is proved by a method different from the original work of N. S. Bakhvalov. In this method, the central role is played by the lemma about the number of linear comparison solutions in a rectangular area. The paper gives new estimates of the number of lattice points of linear comparison solutions in rectangular regions. This allows us to prove the strengthened Bakhvalov theorem on the evaluation of the hyperbolic zeta function of the lattice of solutions of linear comparison. The difference between the theorem on the number of lattice points of linear comparison solutions in rectangular regions and the corresponding Korobov lemma is that instead of one estimate through the ratio of the volume of a rectangular region to a hyperbolic parameter, two more cases are added and in the first case the constant is reduced. The use of the theorem on the number of lattice points of linear comparison solutions in rectangular areas leads to the need to prove the Bakhvalov–Korobov theorem to consider various areas of application of the theorem on the number of lattice points of linear comparison solutions in rectangular areas.
Keywords: parallelepipedal grid, quadrature formulas, method of optimal coefficients, quantitative measure of grid quality.
@article{CHEB_2022_23_5_a10,
     author = {N. K. Ter-Gukasova and M. N. Dobrovol'skii and N. N. Dobrovol'skii and N. M. Dobrovol'skii},
     title = {On the number of lattice points of linear comparison solutions in rectangular areas},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {130--144},
     publisher = {mathdoc},
     volume = {23},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a10/}
}
TY  - JOUR
AU  - N. K. Ter-Gukasova
AU  - M. N. Dobrovol'skii
AU  - N. N. Dobrovol'skii
AU  - N. M. Dobrovol'skii
TI  - On the number of lattice points of linear comparison solutions in rectangular areas
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 130
EP  - 144
VL  - 23
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a10/
LA  - ru
ID  - CHEB_2022_23_5_a10
ER  - 
%0 Journal Article
%A N. K. Ter-Gukasova
%A M. N. Dobrovol'skii
%A N. N. Dobrovol'skii
%A N. M. Dobrovol'skii
%T On the number of lattice points of linear comparison solutions in rectangular areas
%J Čebyševskij sbornik
%D 2022
%P 130-144
%V 23
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a10/
%G ru
%F CHEB_2022_23_5_a10
N. K. Ter-Gukasova; M. N. Dobrovol'skii; N. N. Dobrovol'skii; N. M. Dobrovol'skii. On the number of lattice points of linear comparison solutions in rectangular areas. Čebyševskij sbornik, Tome 23 (2022) no. 5, pp. 130-144. http://geodesic.mathdoc.fr/item/CHEB_2022_23_5_a10/

[1] Babenko K. I., Osnovy chislennogo analiza, Nauka, M., 1986

[2] Bakhvalov N. S., “O priblizhennom vychislenii kratnykh integralov”, Vestn. Mosk. un-ta, 1959, no. 4, 3–18

[3] Bocharova (Dobrovolskaya) L. P., “Algoritmy poiska optimalnykh koeffitsientov”, Chebyshevskii sbornik, 8:1(21) (2007), 4–109

[4] Bykovskii V. A., “O pogreshnosti teoretiko-chislovykh kvadraturnykh formul”, Chebyshevskii sbornik, 3:2(4) (2002), 27–33

[5] Dobrovolskaya L. P., Dobrovolskii N. M., Simonov A. S., “O pogreshnosti priblizhennogo integrirovaniya po modifitsirovannym setkam”, Chebyshevskii sbornik, 9:1(25) (2008), 185–223

[6] Dobrovolskii M. N., “Otsenki summ po giperbolicheskomu krestu”, Izvestiya TulGU. Ser. Matematika. Mekhanika. Informatika, 9:1 (2003), 82–90

[7] M. N. Dobrovolskii, “Ob optimalnykh koeffitsientakh kombinirovannykh setok”, Chebyshevskii sbornik, 5:1(4) (2004), 95–121

[8] Dobrovolskii M. N., Dobrovolskii N. M., Kiseleva O. V., “O proizvedenii obobschennykh parallelepipedalnykh setok tselochislennykh reshetok”, Chebyshevskii sbornik, 3:2(4) (2002), 43–59

[9] Dobrovolskii N. M., Giperbolicheskaya dzeta funktsiya reshetok, Dep. v VINITI 24.08.84, No 6090-84

[10] Dobrovolskii N. M., Korobov N. M., “Ob otsenke pogreshnosti kvadraturnykh formul s optimalnymi parallelepipedalnymi setkami”, Chebyshevskii sbornik, 3:1(3) (2002), 41–48

[11] Korobov N. M., “Vychislenie kratnykh integralov metodom optimalnykh koeffitsientov”, Vestn. Mosk. un-ta, 1959, no. 4, 19–25

[12] Korobov N. M., “O priblizhennom vychislenii kratnykh integralov”, DAN SSSR, 124:6 (1959), 1207–1210

[13] Korobov N. M., “Svoistva i vychislenie optimalnykh koeffitsientov”, DAN SSSR, 132:5 (1960), 1009–1012

[14] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963

[15] Korobov N. M., “Kvadraturnye formuly s kombinirovannymi setkami”, Matematicheskie zametki, 55:2 (1994), 83–90

[16] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, vtoroe izdanie, MTsNMO, M., 2004

[17] Korobov N. M., “Ob odnoi otsenke v metode optimalnykh koeffitsientov”, Tezisy IV Vserossiiskoi konferentsii «Sovremennye problemy matematiki, mekhaniki, informatiki» (Tula, 2002), 39–40

[18] N. M. Korobov, N. M. Dobrovolskii, “Kriterii optimalnosti i algoritmy poiska optimalnykh koeffitsientov”, Chebyshevskii sbornik, 8:4(24) (2007), 105–128

[19] Lokutsievskii O. V., Gavrikov M. B., Nachala chislennogo analiza, TOO Yanus, M., 1995

[20] Rebrov E. D., “Algoritm Dobrovolskoi i chislennoe integrirovanie s pravilom ostanovki”, Chebyshevskii sbornik, 10:1(29) (2009), 65–77

[21] Ogorodnichuk N. K, Rebrov E. D., “Ob algoritme chislennogo integrirovaniya s pravilom ostanovki”, Materialy 7 mezhdunarodnoi konferentsii «Algebra i teoriya chisel: sovremennye problemy i prilozheniya», Iz-vo TGPU im. L. N. Tolstogo, Tula, 2010, 153–158

[22] Ogorodnichuk N. K, Rebrov E. D., “POIVS TMK: Algoritmy integrirovaniya s pravilom ostanovki”, Trudy Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Mnogomasshtabnoe modelirovanie struktur i nanotekhnologii, posvyaschennoi 190-letiyu so dnya rozhdeniya akademika Pafnutiya Lvovicha Chebysheva, stoletiyu so dnya rozhdeniya akademika Sergeya Vasilevicha Vonsovskogo i 80-letiyu so dnya rozhdeniya chlen-korrespondenta Viktora Anatolevicha Buravikhina”, Iz-vo TGPU im. L. N. Tolstogo, Tula, 2011, 153–158

[23] N. M. Dobrovolskiy, L. P. Dobrovolskaya, N. N. Dobrovolskiy, N. K. Ogorodnichuk, E. D. Rebrov, “Algorithms fot computing optimal coefficients”, Book of abstracts of the International scientific conference “Computer Algebra and Information Technology” (Odessa, August 20–26, 2012), 22–24

[24] Dobrovolskaya L. P., Dobrovolskii N. M., Dobrovolskii N. N., Ogorodnichuk N. K., Rebrov E. D., Rebrova I. Yu., “Nekotorye voprosy teoretiko-chislovogo metoda v priblizhennom analize”, Uchenye zapiski Orlovskogo gosudarstvennogo universiteta, 2012, no. 6-2, Trudy X mezhdunarodnoi konferentsii “Algebra i teoriya chisel: sovremennye problemy i prilozheniya”, 90–98

[25] Seregina N. K., “Algoritmy chislennogo integrirovaniya s pravilom ostanovki”, Izvestiya TulGU. Estestvennye nauki, 2013, no. 3, 1293–201

[26] Seregina N. K., “O kolichestvennoi mere kachestva optimalnykh koeffitsientov”, Izvestiya TulGU. Estestvennye nauki, 2015 (to appear)