The method of approximate solution of a system of differential equations from the Ramsey--Kass--Koopmans model, based on the solution in quadratures of one subclass of similar systems
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 115-125

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the Ramsey–Kass–Koopmans model. We consider an auxiliary system of differential equations, which is analogous to the system that arises in the case of constancy of the stationary rate of savings. We found that systems of this class are solved in quadrature. This allows us to find approximate solutions to the system describing the original model.
Keywords: mathematical model, Ramsey–Kass–Koopmans problem, competitive households, stationary savings rate.
@article{CHEB_2022_23_4_a9,
     author = {A. I. Kozko and L. M. Luzhina and A. Yu. Popov and V. G. Chirskii},
     title = {The method of approximate solution of a system of differential equations from the {Ramsey--Kass--Koopmans} model, based on the solution in quadratures of one subclass of similar systems},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {115--125},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a9/}
}
TY  - JOUR
AU  - A. I. Kozko
AU  - L. M. Luzhina
AU  - A. Yu. Popov
AU  - V. G. Chirskii
TI  - The method of approximate solution of a system of differential equations from the Ramsey--Kass--Koopmans model, based on the solution in quadratures of one subclass of similar systems
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 115
EP  - 125
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a9/
LA  - ru
ID  - CHEB_2022_23_4_a9
ER  - 
%0 Journal Article
%A A. I. Kozko
%A L. M. Luzhina
%A A. Yu. Popov
%A V. G. Chirskii
%T The method of approximate solution of a system of differential equations from the Ramsey--Kass--Koopmans model, based on the solution in quadratures of one subclass of similar systems
%J Čebyševskij sbornik
%D 2022
%P 115-125
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a9/
%G ru
%F CHEB_2022_23_4_a9
A. I. Kozko; L. M. Luzhina; A. Yu. Popov; V. G. Chirskii. The method of approximate solution of a system of differential equations from the Ramsey--Kass--Koopmans model, based on the solution in quadratures of one subclass of similar systems. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 115-125. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a9/