The method of approximate solution of a system of differential equations from the Ramsey--Kass--Koopmans model, based on the solution in quadratures of one subclass of similar systems
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 115-125
Voir la notice de l'article provenant de la source Math-Net.Ru
The article is devoted to the Ramsey–Kass–Koopmans model. We consider an auxiliary system of differential equations, which is analogous to the system that arises in the case of constancy of the stationary rate of savings. We found that systems of this class are solved in quadrature. This allows us to find approximate solutions to the system describing the original model.
Keywords:
mathematical model, Ramsey–Kass–Koopmans problem, competitive households, stationary savings rate.
@article{CHEB_2022_23_4_a9,
author = {A. I. Kozko and L. M. Luzhina and A. Yu. Popov and V. G. Chirskii},
title = {The method of approximate solution of a system of differential equations from the {Ramsey--Kass--Koopmans} model, based on the solution in quadratures of one subclass of similar systems},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {115--125},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a9/}
}
TY - JOUR AU - A. I. Kozko AU - L. M. Luzhina AU - A. Yu. Popov AU - V. G. Chirskii TI - The method of approximate solution of a system of differential equations from the Ramsey--Kass--Koopmans model, based on the solution in quadratures of one subclass of similar systems JO - Čebyševskij sbornik PY - 2022 SP - 115 EP - 125 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a9/ LA - ru ID - CHEB_2022_23_4_a9 ER -
%0 Journal Article %A A. I. Kozko %A L. M. Luzhina %A A. Yu. Popov %A V. G. Chirskii %T The method of approximate solution of a system of differential equations from the Ramsey--Kass--Koopmans model, based on the solution in quadratures of one subclass of similar systems %J Čebyševskij sbornik %D 2022 %P 115-125 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a9/ %G ru %F CHEB_2022_23_4_a9
A. I. Kozko; L. M. Luzhina; A. Yu. Popov; V. G. Chirskii. The method of approximate solution of a system of differential equations from the Ramsey--Kass--Koopmans model, based on the solution in quadratures of one subclass of similar systems. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 115-125. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a9/