The method of approximate solution of a system of differential equations from the Ramsey--Kass--Koopmans model, based on the solution in quadratures of one subclass of similar systems
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 115-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article is devoted to the Ramsey–Kass–Koopmans model. We consider an auxiliary system of differential equations, which is analogous to the system that arises in the case of constancy of the stationary rate of savings. We found that systems of this class are solved in quadrature. This allows us to find approximate solutions to the system describing the original model.
Keywords: mathematical model, Ramsey–Kass–Koopmans problem, competitive households, stationary savings rate.
@article{CHEB_2022_23_4_a9,
     author = {A. I. Kozko and L. M. Luzhina and A. Yu. Popov and V. G. Chirskii},
     title = {The method of approximate solution of a system of differential equations from the {Ramsey--Kass--Koopmans} model, based on the solution in quadratures of one subclass of similar systems},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {115--125},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a9/}
}
TY  - JOUR
AU  - A. I. Kozko
AU  - L. M. Luzhina
AU  - A. Yu. Popov
AU  - V. G. Chirskii
TI  - The method of approximate solution of a system of differential equations from the Ramsey--Kass--Koopmans model, based on the solution in quadratures of one subclass of similar systems
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 115
EP  - 125
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a9/
LA  - ru
ID  - CHEB_2022_23_4_a9
ER  - 
%0 Journal Article
%A A. I. Kozko
%A L. M. Luzhina
%A A. Yu. Popov
%A V. G. Chirskii
%T The method of approximate solution of a system of differential equations from the Ramsey--Kass--Koopmans model, based on the solution in quadratures of one subclass of similar systems
%J Čebyševskij sbornik
%D 2022
%P 115-125
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a9/
%G ru
%F CHEB_2022_23_4_a9
A. I. Kozko; L. M. Luzhina; A. Yu. Popov; V. G. Chirskii. The method of approximate solution of a system of differential equations from the Ramsey--Kass--Koopmans model, based on the solution in quadratures of one subclass of similar systems. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 115-125. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a9/

[1] Acemoglu Daron, “The Neoclassical Growth Model”, Introduction to Modern Economic Growth, Princeton University Press, Princeton, 2009, 287–326

[2] Bénassy Jean-Pascal, “The Ramsey Model”, Macroeconomic Theory, Oxford University Press, New York, 2011, 145–160 | DOI

[3] Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G., “Optimalnaya eksponenta v zadache Ramseya — Kassa — Kupmansa s logarifmicheskoi funktsiei poleznosti”, Chebyshevskii sbornik, 20:4 (2019), 197–207 | DOI | MR | Zbl

[4] Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G., “O zadache Ramseya — Kassa — Kupmansa dlya potrebitelskogo vybora”, Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 182, 2020, 39–44 | DOI

[5] Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G., “Model zadachi Ramseya — Kassa — Kupmansa”, Klassicheskaya i sovremennaya geometriya, materialy mezhdunarodnoi konferentsii, posvyaschennoi 100-letiyu so dnya rozhdeniya V. T. Bazyleva (Moskva, 2019), ed. A. V. Tsarev \, Moskovskii pedagogicheskii gosudarstvennyi universitet, M., 2019, 87–88

[6] Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G., “Otsenka neobkhodimogo nachalnogo ekonomicheskogo resursa v zadache Ramseya-Kassa-Kupmansa”, Chebyshevskii sbornik, 20:4 (2019), 188–196 | DOI | MR | Zbl

[7] Kozko A.I., Luzhina L.M., Popov A.Yu., Chirskii V.G., “Funktsiya potrebleniya v modeli ekonomicheskogo rosta Ramseya - Kassa - Kupmansa v sluchae statsionarnosti funktsii sberezheniya”, Chebyshevskii sbornik, 23:1 (2022), 118–129 | DOI | MR

[8] Rahul Giri, Growth Model with Endogenous Savings: Ramsey–Cass–Koopmans Model http://ciep.itam.mx/r̃ahul.giri/uploads/1/1/3/6/113608/ramsey-cass-koopmans_model.pdf

[9] Barro R. Dzh., Sala-i-Martin Kh., Ekonomicheskii rost, BINOM. Laboratoriya znanii, M., 2010

[10] Groth Christian, Koch Karl-Josef, Steger Thomas Michael, Rethinking the Concept of Long-Run Economic Growth (April 2006), CESifo Working Paper Series No1701, 2006 https://ssrn.com/abstract=899250

[11] Groth Christian, Koch Karl-Josef, Steger Thomas Michael, “When Economic Growth is Less than Exponential”, Economic Theory, 44:2 (2010) | DOI | MR | Zbl

[12] Groth C., Chapter 10: The Ramsey Model, 2010 http://web.econ.ku.dk/okocg/VV/VV-2010/Lecture

[13] Romer D., Advanced Macroeconomics, 3rd ed., McGraw-Hill/Irwin, New York, 2006, 651 pp.

[14] Robert J. Barro, “Ramsey Meets Laibson in the Neoclassical Growth Model”, The Quarterly Journal of Economics, Oxford University Press, 114:4 (1999), 1125–1152 | Zbl

[15] King Robert G., Sergio Rebelo, “Transitional Dynamics and Economic Growth in the Neoclassical Model”, American Economic Review, 83 (1993), 908–931

[16] Pierre-Olivier Gourinchas, “Notes for Econ202A: The Ramsey–Cass–Koopmans Model”, UC Berkeley Fall 2014 https://eml.berkeley.edu/w̃ebfac/gourinchas/e202a_f14/Notes_Ramsey_Cass_Koopmans_pog.pdf