Systems of joint Thue polynomials for quadratic irrationalities
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 77-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper introduces a new concept — a system of joint Thue polynomials for a system of integer algebraic irrationalities. A parallel presentation of the elements of the theory of Thue polynomials for one algebraic irrationality and the foundations of the theory for a system of joint Thue polynomials for a system of integer algebraic irrationalities is carried out. A hypothesis is formulated about an analogue of the theorem of M. N. Dobrovolsky (Sr.) that for each order of $j$ there are two main Thue polynomials of the $j$th order, through which all the others are expressed. For a system of two quadratic irrationalities, for example, $\sqrt{2}$ and $\sqrt{3}$, systems of joint basic polynomials of order no lower than $0$, $1$ and $2$ are found. A theorem is proved on the general form of a pair of basic Thue polynomials of arbitrary order $n$ for quadratic irrationality $\sqrt{c}$, where $c$ is a square-free natural number.
Keywords: the minimum polynomial of the given algebraic irrationality, residual fractions, continued fractions, Tue pair, a system of joint Tue polynomials.
@article{CHEB_2022_23_4_a6,
     author = {N. N. Dobrovol'skii and N. M. Dobrovol'skii and I. Yu. Rebrova and E. A. Matveeva},
     title = {Systems of joint {Thue} polynomials for quadratic irrationalities},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {77--91},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a6/}
}
TY  - JOUR
AU  - N. N. Dobrovol'skii
AU  - N. M. Dobrovol'skii
AU  - I. Yu. Rebrova
AU  - E. A. Matveeva
TI  - Systems of joint Thue polynomials for quadratic irrationalities
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 77
EP  - 91
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a6/
LA  - ru
ID  - CHEB_2022_23_4_a6
ER  - 
%0 Journal Article
%A N. N. Dobrovol'skii
%A N. M. Dobrovol'skii
%A I. Yu. Rebrova
%A E. A. Matveeva
%T Systems of joint Thue polynomials for quadratic irrationalities
%J Čebyševskij sbornik
%D 2022
%P 77-91
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a6/
%G ru
%F CHEB_2022_23_4_a6
N. N. Dobrovol'skii; N. M. Dobrovol'skii; I. Yu. Rebrova; E. A. Matveeva. Systems of joint Thue polynomials for quadratic irrationalities. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 77-91. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a6/

[1] Dobrovolskii M. N., “O razlozhenii irratsionalnostei tretei stepeni v nepreryvnye drobi”, Chebyshevskii sbornik, XI:4(36), 4–24 | MR

[2] V. A. Krechmar, “O verkhnem predele chisla predstavlenii tselogo chisla nekotorymi binarnymi formami chetvertoi stepeni”, Izv. AN SSSR. Ser. matem., 3:3 (1939), 289–302

[3] E. A. Morozova, “Mnogochleny Tue dlya kvadratichnykh irratsionalnostei”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy i prilozheniya, Materialy XIII Mezhdunarodnoi konferentsii (Tula, 15-17 aprelya 2015 goda, Tulskii gosudarstvennyi pedagogicheskii universitet im. L. N. Tolstogo), Tulskii gosudarstvennyi pedagogicheskii universitet im. L.N. Tolstogo, Tula, 2015, 161–168

[4] Podsypanin V. D., “O mnogochlenakh Tue i razlozhenii irratsionalnostei chetvertoi stepeni v nepreryvnuyu drob”, Chebyshevskii sbornik, XI:4(36), 25–69 | MR

[5] Siegel C. L., “Über einige Anwendungen Diophantischer Approximationen”, Abhandlungen der Preuss. Akad. d. Wissensch. Phys.-Math. Klasse, 1929, 1–70

[6] Thue A., “Über Annäherungswerte algebraischer Zahlen”, J. reine ang. Math., 135 (1910), 284–305 | MR