Mots-clés : Tue pair
@article{CHEB_2022_23_4_a6,
author = {N. N. Dobrovol'skii and N. M. Dobrovol'skii and I. Yu. Rebrova and E. A. Matveeva},
title = {Systems of joint {Thue} polynomials for quadratic irrationalities},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {77--91},
year = {2022},
volume = {23},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a6/}
}
TY - JOUR AU - N. N. Dobrovol'skii AU - N. M. Dobrovol'skii AU - I. Yu. Rebrova AU - E. A. Matveeva TI - Systems of joint Thue polynomials for quadratic irrationalities JO - Čebyševskij sbornik PY - 2022 SP - 77 EP - 91 VL - 23 IS - 4 UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a6/ LA - ru ID - CHEB_2022_23_4_a6 ER -
N. N. Dobrovol'skii; N. M. Dobrovol'skii; I. Yu. Rebrova; E. A. Matveeva. Systems of joint Thue polynomials for quadratic irrationalities. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 77-91. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a6/
[1] Dobrovolskii M. N., “O razlozhenii irratsionalnostei tretei stepeni v nepreryvnye drobi”, Chebyshevskii sbornik, XI:4(36), 4–24 | MR
[2] V. A. Krechmar, “O verkhnem predele chisla predstavlenii tselogo chisla nekotorymi binarnymi formami chetvertoi stepeni”, Izv. AN SSSR. Ser. matem., 3:3 (1939), 289–302
[3] E. A. Morozova, “Mnogochleny Tue dlya kvadratichnykh irratsionalnostei”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy i prilozheniya, Materialy XIII Mezhdunarodnoi konferentsii (Tula, 15-17 aprelya 2015 goda, Tulskii gosudarstvennyi pedagogicheskii universitet im. L. N. Tolstogo), Tulskii gosudarstvennyi pedagogicheskii universitet im. L.N. Tolstogo, Tula, 2015, 161–168
[4] Podsypanin V. D., “O mnogochlenakh Tue i razlozhenii irratsionalnostei chetvertoi stepeni v nepreryvnuyu drob”, Chebyshevskii sbornik, XI:4(36), 25–69 | MR
[5] Siegel C. L., “Über einige Anwendungen Diophantischer Approximationen”, Abhandlungen der Preuss. Akad. d. Wissensch. Phys.-Math. Klasse, 1929, 1–70
[6] Thue A., “Über Annäherungswerte algebraischer Zahlen”, J. reine ang. Math., 135 (1910), 284–305 | MR