Determination of the inhomogeneity parameters of an elastic ball anisotropic outer layer by the scattering of a plane sound wave
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 350-367.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of determining the type of inhomogeneity of the external anisotropic layer of an elastic ball from the scattered field of a plane sound wave is considered. It is assumed that the density and elastic moduli of the outer layer material are linear functions of the distance from the center of the ball. It is believed that the laws of dependency of all moduli of elasticity are identical. According to the acoustic pressure in the vicinity of the ball, it is required to determine the coefficients in the dependences for the density and elastic moduli. The problem of sound diffraction by a ball is solved by a numerical-analytical method. The scattered acoustic field and the field of elastic oscillations in the homogeneous part of the ball is represented by an expansion in terms of spherical harmonics. For the displacement and stress vector components in an inhomogeneous layer, a boundary value problem is numerically solved based on the equations of motion and boundary conditions on the layer surfaces. To determine the desired coefficients in the dependences of the density and elastic moduli of the outer layer, the observed pressure values are compared at a certain set of points on a spherical surface centered at the center of the ball and the calculated pressure values at these points. A variant of forming an indicator of the proximity of observed and calculated pressure values based on the division of observation points into groups is proposed. It is proposed to use the proximity indicator to identify the coefficients in the laws of density inhomogeneity and elastic moduli in the layer.
Keywords: sound scattering, plane sound wave, layered inhomogeneous elastic ball, transversally isotropic layer, numerical-analytical solution of the diffraction problem, coefficient inverse problem, proximity indicator.
@article{CHEB_2022_23_4_a27,
     author = {S. A. Skobel'tsyn},
     title = {Determination of the inhomogeneity parameters of an elastic ball anisotropic outer layer by the scattering of a plane sound wave},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {350--367},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a27/}
}
TY  - JOUR
AU  - S. A. Skobel'tsyn
TI  - Determination of the inhomogeneity parameters of an elastic ball anisotropic outer layer by the scattering of a plane sound wave
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 350
EP  - 367
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a27/
LA  - ru
ID  - CHEB_2022_23_4_a27
ER  - 
%0 Journal Article
%A S. A. Skobel'tsyn
%T Determination of the inhomogeneity parameters of an elastic ball anisotropic outer layer by the scattering of a plane sound wave
%J Čebyševskij sbornik
%D 2022
%P 350-367
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a27/
%G ru
%F CHEB_2022_23_4_a27
S. A. Skobel'tsyn. Determination of the inhomogeneity parameters of an elastic ball anisotropic outer layer by the scattering of a plane sound wave. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 350-367. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a27/

[1] Colton D., Kirsch A., “A simple method for solving inverse scattering problems in the resonance region”, Inverse Problems, 12 (1996), 383–393 | DOI | MR | Zbl

[2] Gilbert R. P., Xu Y., “Acoustic imaging in a shallow ocean with a thin ice cap”, Inverse Problems, 16 (2000), 1799–1811 | DOI | MR | Zbl

[3] Guzina B. B., Nintcheu S. F., Bonnet M., “On the stress-wave imaging of cavities in a semi-infinite solid”, Int. J. Solids Struct., 40:6 (2003), 1505–1523 | DOI | Zbl

[4] Martin P. A., “Acoustic scattering by inhomogeneous obstacles”, SIAM J. Appl. Math., 64 (2003), 297–308 | DOI | MR | Zbl

[5] Bilgin E., Yapar A., Yelkenci T., “An acoustic inverse scattering problem for spheres with radially inhomogeneous compressibility”, J. Acoust. Soc. Am., 133:4 (2013), 2097–2104 | DOI

[6] Bogachev I. V., Nedin R. D., Vatul`yan A. O., Yavruyan O. V., “Identification of inhomogeneous elastic properties of isotropic cylinder”, ZAMM - J. Applied Mathematics and Mechanics, 97:3 (2017), 358–364 | DOI | MR

[7] Vatul'yan A.O., Yurov V.O., “On Estimating the Laws of Radial Inhomogeneity in a Cylindrical Waveguide”, Acoust. Phys., 66 (2020), 97–104 | DOI

[8] Vatulyan A. O., “O koeffitsientnykh obratnykh zadachakh i ikh prilozheniyakh v mekhanike i biomekhanike”, Mechanics – Proceedings of National Academy of Sciences of Armenia, 75:1 (2022), 36–47 | DOI | MR

[9] Larin N. V., Skobel'tsyn S. A., Tolokonnikov L. A., “Determination of the inhomogeneity laws for an elastic layer with preset sound-reflecting properties”, Acoustical Physics, 61:5 (2015), 504–510 | DOI

[10] Skobeltsyn S.A., “Opredelenie parametrov neodnorodnogo pokrytiya uprugogo tsilindra s polostyu dlya obespecheniya zadannykh zvukootrazhayuschikh svoistv”, Izv. TulGU. Tekhnicheskie nauki, 2017, no. 7, 163–175

[11] Skobeltsyn S.A., “Opredelenie parametrov neodnorodnosti pokrytiya ellipticheskogo tsilindra po rasseyaniyu zvuka v prisutstvii uprugogo poluprostranstva”, Izv. TulGU. Tekhnicheskie nauki, 2018, no. 9, 290–302

[12] Skobelt'syn S. A., Peshkov N. Y., “Finding, by means of a scattered sound, the geometric parameters of a finite elastic cylinder located near the half-space border”, J. Physics: Conference Series, 1203 (2019), 012023, 10 pp. | DOI

[13] Skobeltsyn S. A., Peshkov N. Yu., “Opredelenie tolschiny neodnorodnogo pokrytiya konechnogo uprugogo tsilindra po rasseyannomu zvuku v poluprostranstve”, Izvestiya TulGU. Tekhnicheskie nauki, 2020, no. 10, 172–183

[14] Fedorov F. I., Teoriya uprugikh voln v kristallakh, Nauka, M., 1965, 388 pp.

[15] Cherradi N., Kawasaki A., Gasik M., “Worldwide trends in functional gradient materials research and development”, Composites Engineering, 4:8 (1994), 883–894 | DOI

[16] Skuchik E., Osnovy akustiki, v. 1, Mir, M., 1976, 520 pp.

[17] Isakovich M. A., Obschaya akustika, Nauka, M., 1973, 496 pp.

[18] Novatskii V., Teoriya uprugosti, Mir, M., 1975, 872 pp.

[19] Skobeltsyn S. A., Tolokonnikov L. A., “Rasseyanie zvuka neodnorodnym transversalno-izotropnym sfericheskim sloem”, Akust. zhurn., 41:6 (1995), 917–923

[20] Skuchik E., Osnovy akustiki, v. 2, Mir, M., 1976, 542 pp.

[21] Guz A. N. i dr., Difraktsiya uprugikh voln, Nauk.dumka, Kiev, 1978, 307 pp. | MR

[22] Korn G. A., Korn T. M., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1978, 832 pp.

[23] Mors F., Feshbakh G., Metody teoreticheskoi fiziki, v. 2, Izd.inostr.lit., M., 1960, 886 pp.

[24] Shulga N. A., Grigorenko A. Ya., Efimova T. L., “Svobodnye neosesimmetrichnye kolebaniya tolstostennogo transversalno-izotropnogo pologo shara”, Prikl. mekhanika, 24:5 (1988), 12–17 | Zbl