Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_4_a27, author = {S. A. Skobel'tsyn}, title = {Determination of the inhomogeneity parameters of an elastic ball anisotropic outer layer by the scattering of a plane sound wave}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {350--367}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a27/} }
TY - JOUR AU - S. A. Skobel'tsyn TI - Determination of the inhomogeneity parameters of an elastic ball anisotropic outer layer by the scattering of a plane sound wave JO - Čebyševskij sbornik PY - 2022 SP - 350 EP - 367 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a27/ LA - ru ID - CHEB_2022_23_4_a27 ER -
%0 Journal Article %A S. A. Skobel'tsyn %T Determination of the inhomogeneity parameters of an elastic ball anisotropic outer layer by the scattering of a plane sound wave %J Čebyševskij sbornik %D 2022 %P 350-367 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a27/ %G ru %F CHEB_2022_23_4_a27
S. A. Skobel'tsyn. Determination of the inhomogeneity parameters of an elastic ball anisotropic outer layer by the scattering of a plane sound wave. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 350-367. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a27/
[1] Colton D., Kirsch A., “A simple method for solving inverse scattering problems in the resonance region”, Inverse Problems, 12 (1996), 383–393 | DOI | MR | Zbl
[2] Gilbert R. P., Xu Y., “Acoustic imaging in a shallow ocean with a thin ice cap”, Inverse Problems, 16 (2000), 1799–1811 | DOI | MR | Zbl
[3] Guzina B. B., Nintcheu S. F., Bonnet M., “On the stress-wave imaging of cavities in a semi-infinite solid”, Int. J. Solids Struct., 40:6 (2003), 1505–1523 | DOI | Zbl
[4] Martin P. A., “Acoustic scattering by inhomogeneous obstacles”, SIAM J. Appl. Math., 64 (2003), 297–308 | DOI | MR | Zbl
[5] Bilgin E., Yapar A., Yelkenci T., “An acoustic inverse scattering problem for spheres with radially inhomogeneous compressibility”, J. Acoust. Soc. Am., 133:4 (2013), 2097–2104 | DOI
[6] Bogachev I. V., Nedin R. D., Vatul`yan A. O., Yavruyan O. V., “Identification of inhomogeneous elastic properties of isotropic cylinder”, ZAMM - J. Applied Mathematics and Mechanics, 97:3 (2017), 358–364 | DOI | MR
[7] Vatul'yan A.O., Yurov V.O., “On Estimating the Laws of Radial Inhomogeneity in a Cylindrical Waveguide”, Acoust. Phys., 66 (2020), 97–104 | DOI
[8] Vatulyan A. O., “O koeffitsientnykh obratnykh zadachakh i ikh prilozheniyakh v mekhanike i biomekhanike”, Mechanics – Proceedings of National Academy of Sciences of Armenia, 75:1 (2022), 36–47 | DOI | MR
[9] Larin N. V., Skobel'tsyn S. A., Tolokonnikov L. A., “Determination of the inhomogeneity laws for an elastic layer with preset sound-reflecting properties”, Acoustical Physics, 61:5 (2015), 504–510 | DOI
[10] Skobeltsyn S.A., “Opredelenie parametrov neodnorodnogo pokrytiya uprugogo tsilindra s polostyu dlya obespecheniya zadannykh zvukootrazhayuschikh svoistv”, Izv. TulGU. Tekhnicheskie nauki, 2017, no. 7, 163–175
[11] Skobeltsyn S.A., “Opredelenie parametrov neodnorodnosti pokrytiya ellipticheskogo tsilindra po rasseyaniyu zvuka v prisutstvii uprugogo poluprostranstva”, Izv. TulGU. Tekhnicheskie nauki, 2018, no. 9, 290–302
[12] Skobelt'syn S. A., Peshkov N. Y., “Finding, by means of a scattered sound, the geometric parameters of a finite elastic cylinder located near the half-space border”, J. Physics: Conference Series, 1203 (2019), 012023, 10 pp. | DOI
[13] Skobeltsyn S. A., Peshkov N. Yu., “Opredelenie tolschiny neodnorodnogo pokrytiya konechnogo uprugogo tsilindra po rasseyannomu zvuku v poluprostranstve”, Izvestiya TulGU. Tekhnicheskie nauki, 2020, no. 10, 172–183
[14] Fedorov F. I., Teoriya uprugikh voln v kristallakh, Nauka, M., 1965, 388 pp.
[15] Cherradi N., Kawasaki A., Gasik M., “Worldwide trends in functional gradient materials research and development”, Composites Engineering, 4:8 (1994), 883–894 | DOI
[16] Skuchik E., Osnovy akustiki, v. 1, Mir, M., 1976, 520 pp.
[17] Isakovich M. A., Obschaya akustika, Nauka, M., 1973, 496 pp.
[18] Novatskii V., Teoriya uprugosti, Mir, M., 1975, 872 pp.
[19] Skobeltsyn S. A., Tolokonnikov L. A., “Rasseyanie zvuka neodnorodnym transversalno-izotropnym sfericheskim sloem”, Akust. zhurn., 41:6 (1995), 917–923
[20] Skuchik E., Osnovy akustiki, v. 2, Mir, M., 1976, 542 pp.
[21] Guz A. N. i dr., Difraktsiya uprugikh voln, Nauk.dumka, Kiev, 1978, 307 pp. | MR
[22] Korn G. A., Korn T. M., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1978, 832 pp.
[23] Mors F., Feshbakh G., Metody teoreticheskoi fiziki, v. 2, Izd.inostr.lit., M., 1960, 886 pp.
[24] Shulga N. A., Grigorenko A. Ya., Efimova T. L., “Svobodnye neosesimmetrichnye kolebaniya tolstostennogo transversalno-izotropnogo pologo shara”, Prikl. mekhanika, 24:5 (1988), 12–17 | Zbl