Voir la notice de l'article provenant de la source Math-Net.Ru
@article{CHEB_2022_23_4_a21, author = {V. A. Levin and K. M. Zingerman and A. E. Belkin}, title = {Exact analytical solution for a problem of equilibrium of a composite plate containing prestressed parts made of incompressible elastic materials under superimposed finite strains}, journal = {\v{C}eby\v{s}evskij sbornik}, pages = {251--261}, publisher = {mathdoc}, volume = {23}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a21/} }
TY - JOUR AU - V. A. Levin AU - K. M. Zingerman AU - A. E. Belkin TI - Exact analytical solution for a problem of equilibrium of a composite plate containing prestressed parts made of incompressible elastic materials under superimposed finite strains JO - Čebyševskij sbornik PY - 2022 SP - 251 EP - 261 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a21/ LA - ru ID - CHEB_2022_23_4_a21 ER -
%0 Journal Article %A V. A. Levin %A K. M. Zingerman %A A. E. Belkin %T Exact analytical solution for a problem of equilibrium of a composite plate containing prestressed parts made of incompressible elastic materials under superimposed finite strains %J Čebyševskij sbornik %D 2022 %P 251-261 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a21/ %G ru %F CHEB_2022_23_4_a21
V. A. Levin; K. M. Zingerman; A. E. Belkin. Exact analytical solution for a problem of equilibrium of a composite plate containing prestressed parts made of incompressible elastic materials under superimposed finite strains. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 251-261. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a21/
[1] Levin V.A., Tarasiev G.S., “Superposition of large elastic deformations in the space of final-states”, Doklady Akademii Nauk SSSR, 251 (1980), 63–66 | Zbl
[2] Zingerman K.M., Levin V.A., “Redistribution of finite elastic strains after the formation of inclusions. Approximate analytical solution”, Journal of Applied Mathematics and Mechanics, 73:6 (2009), 710–721 | DOI | MR | Zbl
[3] Levin V.A., Zubov L.M., Zingerman K.M., “An exact solution to the problem of biaxial loading of a micropolar elastic plate made by joining two prestrained arc-shaped layers under large strains”, European Journal of Mechanics — A/Solids, 88 (2021), 104237 | DOI | MR | Zbl
[4] Levin V.A., Zubov L.M., Zingerman K.M., “The torsion of a composite, nonlinear-elastic cylinder with an inclusion having initial large strains”, International Journal of Solids and Structures, 51 (2014), 1403–1409 | DOI | MR
[5] Levin V.A., Zubov L.M., Zingerman K.M., “Multiple joined prestressed orthotropic layers under large strains”, International Journal of Engineering Science, 133 (2018), 47–59 | DOI | MR | Zbl
[6] Levin V.A., Zubov L.M., Zingerman K.M., “An exact solution for the problem of flexure of a composite beam with preliminarily strained layers under large strains”, International Journal of Solids and Structures, 67–68 (2015), 244–249 | DOI | MR
[7] Abramov S.M., Amelkin S.A., Klyuev L.V., Krapivin K.Yu., Nozhnitskii Yu.A., Servetnik A.N., Chichkovskii A.A., “Ispolzovanie programmy Fidesis dlya modelirovaniya razvitiya bolshikh plasticheskikh deformatsii vo vraschayuschemsya diske”, Chebyshevskii Sbornik, 18:3, 15–27 | DOI | MR | Zbl
[8] Konovalov D. A., Yakovlev M. Ya., “O chislennoi otsenke effektivnykh uprugikh kharakteristik elastomernykh kompozitov pri konechnykh deformatsiyakh s ispolzovaniem metoda spektralnykh elementov s pomoschyu CAE Fidesys”, Chebyshevskii Sbornik, 18:3, 316–329 | MR
[9] Vershinin A.V., Sabitov D.I., Ishbulatov S.Yu., Myasnikov A.V., “Gidrogeomekhanicheskoe modelirovanie gidrogeomekhanicheskikh plastovykh protsessov putem vneshnego sopryazheniya spetsializirovannykh vychislitelnykh paketov i universalnoi CAE Fidesys”, Chebyshevskii Sbornik, 18:3, 154–186 | DOI | MR
[10] Noor A.K., Burton W.S., “Assessment of shear deformation theories for multilayered composite plates”, Applied Mechanics Review, 41 (1989), 1–18 | DOI
[11] Carrera E., “Theories and finite elements for multilayered, anisotropic, composite plates and shells”, ARCO, 9 (2002), 87–140 | DOI | MR | Zbl
[12] Kulikov G.M., “Computational models for multilayered composite shells with application to tires”, Tire Science and Technology, 24:1 (1996), 11–38 | DOI
[13] Badriev I. B., Makarov M. V., Paimuhin V. N., “Longitudinal and transverse bending by a cylindrical shape of the sandwich plate stiffened in the end sections by rigid bodies”, IOP Conference Series: Materials Science and Engineering, 158 (2016), 012011 | DOI
[14] Makarov M. V., Badriev I. B., Buyanov V. Yu., Smirnova E. V., “On solving the geometrically nonlinear and linear problems of transverse bending of a hinged fixing sandwich plate with transversally soft core”, Journal of Physics: Conference Series, 1158:3 (2019), 032026 | DOI
[15] Lure A.I., Nelineinaya teoriya uprugosti, Nauka, M., 1980, 512 pp.
[16] Treloar L.R.G., The Physics of Rubber Elasticity, Oxford University Press, 1975
[17] Mooney M., “A theory of large elastic deformation”, Journal of Applied Physics, 11 (1940), 582 | DOI
[18] Zubov L.M., “Universal deformations of micropolar isotropic elastic solids”, Mathematics and Mechanics of Solids, 21 (2016), 152–167 | DOI | MR | Zbl
[19] Eremeyev V.A., Lebedev L.P., Altenbach H., Foundations of Micropolar Mechanics, Springer, Heidelberg, 2013 | MR | Zbl