On Bykovsky estimates for a measure of the quality of optimal coefficients
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 178-187

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to obtaining estimates of the type of Bykovsky estimates for a measure of the quality of optimal coefficients. The ways to obtain analogs of the Bykovsky estimate for the finite deviation of the parallelepipedal grid are outlined.
Keywords: quality function, generalized parallelepipedal grid, Bykovsky set, Bykovsky sum, local lattice minima, minimal comparison solutions.
@article{CHEB_2022_23_4_a16,
     author = {A. N. Kormacheva and N. N. Dobrovol'skii and I. Yu. Rebrova and N. M. Dobrovol'skii and T. A. Morozova},
     title = {On {Bykovsky} estimates for a measure of the quality of optimal coefficients},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {178--187},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a16/}
}
TY  - JOUR
AU  - A. N. Kormacheva
AU  - N. N. Dobrovol'skii
AU  - I. Yu. Rebrova
AU  - N. M. Dobrovol'skii
AU  - T. A. Morozova
TI  - On Bykovsky estimates for a measure of the quality of optimal coefficients
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 178
EP  - 187
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a16/
LA  - ru
ID  - CHEB_2022_23_4_a16
ER  - 
%0 Journal Article
%A A. N. Kormacheva
%A N. N. Dobrovol'skii
%A I. Yu. Rebrova
%A N. M. Dobrovol'skii
%A T. A. Morozova
%T On Bykovsky estimates for a measure of the quality of optimal coefficients
%J Čebyševskij sbornik
%D 2022
%P 178-187
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a16/
%G ru
%F CHEB_2022_23_4_a16
A. N. Kormacheva; N. N. Dobrovol'skii; I. Yu. Rebrova; N. M. Dobrovol'skii; T. A. Morozova. On Bykovsky estimates for a measure of the quality of optimal coefficients. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 178-187. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a16/