On Bykovsky estimates for a measure of the quality of optimal coefficients
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 178-187
Voir la notice de l'article provenant de la source Math-Net.Ru
This work is devoted to obtaining estimates of the type of Bykovsky estimates for a measure of the quality of optimal coefficients.
The ways to obtain analogs of the Bykovsky estimate for the finite deviation of the parallelepipedal grid are outlined.
Keywords:
quality function, generalized parallelepipedal grid, Bykovsky set, Bykovsky sum, local lattice minima, minimal comparison solutions.
@article{CHEB_2022_23_4_a16,
author = {A. N. Kormacheva and N. N. Dobrovol'skii and I. Yu. Rebrova and N. M. Dobrovol'skii and T. A. Morozova},
title = {On {Bykovsky} estimates for a measure of the quality of optimal coefficients},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {178--187},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a16/}
}
TY - JOUR AU - A. N. Kormacheva AU - N. N. Dobrovol'skii AU - I. Yu. Rebrova AU - N. M. Dobrovol'skii AU - T. A. Morozova TI - On Bykovsky estimates for a measure of the quality of optimal coefficients JO - Čebyševskij sbornik PY - 2022 SP - 178 EP - 187 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a16/ LA - ru ID - CHEB_2022_23_4_a16 ER -
%0 Journal Article %A A. N. Kormacheva %A N. N. Dobrovol'skii %A I. Yu. Rebrova %A N. M. Dobrovol'skii %A T. A. Morozova %T On Bykovsky estimates for a measure of the quality of optimal coefficients %J Čebyševskij sbornik %D 2022 %P 178-187 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a16/ %G ru %F CHEB_2022_23_4_a16
A. N. Kormacheva; N. N. Dobrovol'skii; I. Yu. Rebrova; N. M. Dobrovol'skii; T. A. Morozova. On Bykovsky estimates for a measure of the quality of optimal coefficients. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 178-187. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a16/