Deviation estimates for rational grids approximating algebraic
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 170-177

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to obtaining estimates of the deviation of a parallelepipedal grid, which is a rational grid approximating the algebraic grid of a quadratic field. New tasks have been set for further research.
Keywords: quadratic fields, approximation of algebraic grids, quality function, generalized parallelepipedal grid, Bykovsky set, Bykovsky sum, local lattice minima, minimal comparison solutions.
@article{CHEB_2022_23_4_a15,
     author = {N. N. Dobrovol'skii and I. Yu. Rebrova and A. N. Kormacheva and N. M. Dobrovol'skii},
     title = {Deviation estimates for rational grids approximating algebraic},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {170--177},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a15/}
}
TY  - JOUR
AU  - N. N. Dobrovol'skii
AU  - I. Yu. Rebrova
AU  - A. N. Kormacheva
AU  - N. M. Dobrovol'skii
TI  - Deviation estimates for rational grids approximating algebraic
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 170
EP  - 177
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a15/
LA  - ru
ID  - CHEB_2022_23_4_a15
ER  - 
%0 Journal Article
%A N. N. Dobrovol'skii
%A I. Yu. Rebrova
%A A. N. Kormacheva
%A N. M. Dobrovol'skii
%T Deviation estimates for rational grids approximating algebraic
%J Čebyševskij sbornik
%D 2022
%P 170-177
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a15/
%G ru
%F CHEB_2022_23_4_a15
N. N. Dobrovol'skii; I. Yu. Rebrova; A. N. Kormacheva; N. M. Dobrovol'skii. Deviation estimates for rational grids approximating algebraic. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 170-177. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a15/