Deviation estimates for rational grids approximating algebraic
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 170-177
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper is devoted to obtaining estimates of the deviation of a parallelepipedal grid, which is a rational grid approximating the algebraic grid of a quadratic field.
New tasks have been set for further research.
Keywords:
quadratic fields, approximation of algebraic grids, quality function, generalized parallelepipedal grid, Bykovsky set, Bykovsky sum, local lattice minima, minimal comparison solutions.
@article{CHEB_2022_23_4_a15,
author = {N. N. Dobrovol'skii and I. Yu. Rebrova and A. N. Kormacheva and N. M. Dobrovol'skii},
title = {Deviation estimates for rational grids approximating algebraic},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {170--177},
publisher = {mathdoc},
volume = {23},
number = {4},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a15/}
}
TY - JOUR AU - N. N. Dobrovol'skii AU - I. Yu. Rebrova AU - A. N. Kormacheva AU - N. M. Dobrovol'skii TI - Deviation estimates for rational grids approximating algebraic JO - Čebyševskij sbornik PY - 2022 SP - 170 EP - 177 VL - 23 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a15/ LA - ru ID - CHEB_2022_23_4_a15 ER -
%0 Journal Article %A N. N. Dobrovol'skii %A I. Yu. Rebrova %A A. N. Kormacheva %A N. M. Dobrovol'skii %T Deviation estimates for rational grids approximating algebraic %J Čebyševskij sbornik %D 2022 %P 170-177 %V 23 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a15/ %G ru %F CHEB_2022_23_4_a15
N. N. Dobrovol'skii; I. Yu. Rebrova; A. N. Kormacheva; N. M. Dobrovol'skii. Deviation estimates for rational grids approximating algebraic. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 170-177. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a15/