Algebraic grids and their application to the numerical solution of linear integral equations
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 162-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

The new error estimation of the error of the approximate solution of the Fredholm integral equation of the second kind by iteration using algebraic grids are obtained.
Keywords: Fredholm integral equation of the second kind, iteration method, algebraic grids.
@article{CHEB_2022_23_4_a14,
     author = {N. M. Dobrovol'skii and A. S. Podolyan},
     title = {Algebraic grids and their application to the numerical solution of linear integral equations},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {162--169},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a14/}
}
TY  - JOUR
AU  - N. M. Dobrovol'skii
AU  - A. S. Podolyan
TI  - Algebraic grids and their application to the numerical solution of linear integral equations
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 162
EP  - 169
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a14/
LA  - ru
ID  - CHEB_2022_23_4_a14
ER  - 
%0 Journal Article
%A N. M. Dobrovol'skii
%A A. S. Podolyan
%T Algebraic grids and their application to the numerical solution of linear integral equations
%J Čebyševskij sbornik
%D 2022
%P 162-169
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a14/
%G ru
%F CHEB_2022_23_4_a14
N. M. Dobrovol'skii; A. S. Podolyan. Algebraic grids and their application to the numerical solution of linear integral equations. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 162-169. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a14/

[1] Korobov N. M., “O priblizhennom reshenii integralnykh uravnenii”, DAN SSSR, 128:2 (1959), 235–238 | MR | Zbl

[2] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, vtoroe izdanie, MTsNMO, M., 2004

[3] Rebrov E. D., Selivanov S. V., “O priblizhennom reshenii integralnogo uravneniya Fredgolma II roda”, Izvestiya Tulskogo gosudarstvennogo universiteta. Estestvennye nauki, 2012, no. 2, 83–92

[4] Sadovnichii V. A., Grigoryan A. A., Konyagin S. V., Zadachi studencheskikh matematicheskikh olimpiad, Izd-vo Mosk. un-ta, M., 1987, 310 pp.

[5] Lyamin M. I., “Algebraicheskie setki i ikh prilozhenie k chislennomu resheniyu lineinykh integralnykh uravnenii”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy i prilozheniya, Materialy XIII Mezhdunarodnoi konferentsii, posvyaschennoi vosmidesyatipyatiletiyu so dnya rozhdeniya professora Sergeya Sergeevicha Ryshkova (Tula, 25-30 maya 2015 goda, Tulskii gosudarstvennyi pedagogichekii universitet im. L.N. Tolstogo), Tulskii gosudarstvennyi pedagogicheskii universitet im. L.N. Tolstogo, Tula, 2015, 351–354