Algebraic grids and their application to the numerical solution of linear integral equations
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 162-169 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The new error estimation of the error of the approximate solution of the Fredholm integral equation of the second kind by iteration using algebraic grids are obtained.
Keywords: Fredholm integral equation of the second kind, iteration method, algebraic grids.
@article{CHEB_2022_23_4_a14,
     author = {N. M. Dobrovol'skii and A. S. Podolyan},
     title = {Algebraic grids and their application to the numerical solution of linear integral equations},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {162--169},
     year = {2022},
     volume = {23},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a14/}
}
TY  - JOUR
AU  - N. M. Dobrovol'skii
AU  - A. S. Podolyan
TI  - Algebraic grids and their application to the numerical solution of linear integral equations
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 162
EP  - 169
VL  - 23
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a14/
LA  - ru
ID  - CHEB_2022_23_4_a14
ER  - 
%0 Journal Article
%A N. M. Dobrovol'skii
%A A. S. Podolyan
%T Algebraic grids and their application to the numerical solution of linear integral equations
%J Čebyševskij sbornik
%D 2022
%P 162-169
%V 23
%N 4
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a14/
%G ru
%F CHEB_2022_23_4_a14
N. M. Dobrovol'skii; A. S. Podolyan. Algebraic grids and their application to the numerical solution of linear integral equations. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 162-169. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a14/

[1] Korobov N. M., “O priblizhennom reshenii integralnykh uravnenii”, DAN SSSR, 128:2 (1959), 235–238 | MR | Zbl

[2] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, vtoroe izdanie, MTsNMO, M., 2004

[3] Rebrov E. D., Selivanov S. V., “O priblizhennom reshenii integralnogo uravneniya Fredgolma II roda”, Izvestiya Tulskogo gosudarstvennogo universiteta. Estestvennye nauki, 2012, no. 2, 83–92

[4] Sadovnichii V. A., Grigoryan A. A., Konyagin S. V., Zadachi studencheskikh matematicheskikh olimpiad, Izd-vo Mosk. un-ta, M., 1987, 310 pp.

[5] Lyamin M. I., “Algebraicheskie setki i ikh prilozhenie k chislennomu resheniyu lineinykh integralnykh uravnenii”, Algebra, teoriya chisel i diskretnaya geometriya: sovremennye problemy i prilozheniya, Materialy XIII Mezhdunarodnoi konferentsii, posvyaschennoi vosmidesyatipyatiletiyu so dnya rozhdeniya professora Sergeya Sergeevicha Ryshkova (Tula, 25-30 maya 2015 goda, Tulskii gosudarstvennyi pedagogichekii universitet im. L.N. Tolstogo), Tulskii gosudarstvennyi pedagogicheskii universitet im. L.N. Tolstogo, Tula, 2015, 351–354