Delsarte problem for 4-designs on the unit 3-sphere
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 157-161.

Voir la notice de l'article provenant de la source Math-Net.Ru

The extremal Delsarte problem $A(d,s)$ for spherical $s$-designs allows us to estimate from below the minimum number of nodes $N(d,s)$ of a weighted quadrature formula on the sphere $\mathbb{S}^{d}$. We prove that $$ A(3,4)=14.560317967882\ldots. $$ Hence $N(3,4)\ge 15$. Our open conjecture is that $N(3,4)=16$.
Keywords: unit sphere, spherical design, quadrature formula, Delsarte problem.
@article{CHEB_2022_23_4_a13,
     author = {D. V. Gorbachev and I. A. Martyanov},
     title = {Delsarte problem for 4-designs on the unit 3-sphere},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {157--161},
     publisher = {mathdoc},
     volume = {23},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a13/}
}
TY  - JOUR
AU  - D. V. Gorbachev
AU  - I. A. Martyanov
TI  - Delsarte problem for 4-designs on the unit 3-sphere
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 157
EP  - 161
VL  - 23
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a13/
LA  - ru
ID  - CHEB_2022_23_4_a13
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%A I. A. Martyanov
%T Delsarte problem for 4-designs on the unit 3-sphere
%J Čebyševskij sbornik
%D 2022
%P 157-161
%V 23
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a13/
%G ru
%F CHEB_2022_23_4_a13
D. V. Gorbachev; I. A. Martyanov. Delsarte problem for 4-designs on the unit 3-sphere. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 157-161. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a13/

[1] Martyanov I.A., “Reshenie zadachi Delsarta dlya 4-dizainov na sfere $S^{2}$”, Chebyshevskii sbornik, 22:3 (2021), 154–165 | DOI | MR | Zbl