Delsarte problem for 4-designs on the unit 3-sphere
Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 157-161
Cet article a éte moissonné depuis la source Math-Net.Ru
The extremal Delsarte problem $A(d,s)$ for spherical $s$-designs allows us to estimate from below the minimum number of nodes $N(d,s)$ of a weighted quadrature formula on the sphere $\mathbb{S}^{d}$. We prove that $$ A(3,4)=14.560317967882\ldots. $$ Hence $N(3,4)\ge 15$. Our open conjecture is that $N(3,4)=16$.
Keywords:
unit sphere, spherical design, Delsarte problem.
Mots-clés : quadrature formula
Mots-clés : quadrature formula
@article{CHEB_2022_23_4_a13,
author = {D. V. Gorbachev and I. A. Martyanov},
title = {Delsarte problem for 4-designs on the unit 3-sphere},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {157--161},
year = {2022},
volume = {23},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a13/}
}
D. V. Gorbachev; I. A. Martyanov. Delsarte problem for 4-designs on the unit 3-sphere. Čebyševskij sbornik, Tome 23 (2022) no. 4, pp. 157-161. http://geodesic.mathdoc.fr/item/CHEB_2022_23_4_a13/