On the values of hypergeometric function with parameter from algebraic field of the fourth degree
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 262-268.

Voir la notice de l'article provenant de la source Math-Net.Ru

In order to investigate arithmetic properties of the values of generalized hypergeometric functions with rational parameters one often makes use of Siegel's method. By means of this method have been achieved the most general results concerning this problem. The main deficiency of Siegel's method consists in the impossibility of its application in case of hypergeometric functions with irrational parameters. In this situation the investigation is usually based on the effective construction of the functional approximating form (in Siegel's method the existence of such a form is proved by means of pigeon-hole principle). The construction and investigation of an approximating form is the first step to the achievement of arithmetic result. Applying effective method we encounter at least two problems which make considerably narrow the area of its employment. First, the more or less general effective construction of the approximating form for the products of hypergeometric functions is unknown. While using Siegel's method one doesn't deal with such a problem. Hence the investigator is compelled to consider only questions of linear independence of the values of hypergeometric functions over some algebraic field. Choosing this field is the second problem. The great majority of published results concerning corresponding questions deals with imaginary quadratic field (or the field of rational numbers). Only in exceptional situations it is possible to investigate the case of some other algebraic field. We consider here the case of a field of the fourth degree. By means of a special technique we establish linear independence over such a field of the values of some hypergeometric function with irrational parameter from that field.
Keywords: hypergeometric function, effective construction, linear independence.
@article{CHEB_2022_23_3_a20,
     author = {P. L. Ivankov},
     title = {On the values of hypergeometric function with parameter from algebraic field of the fourth degree},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {262--268},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a20/}
}
TY  - JOUR
AU  - P. L. Ivankov
TI  - On the values of hypergeometric function with parameter from algebraic field of the fourth degree
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 262
EP  - 268
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a20/
LA  - ru
ID  - CHEB_2022_23_3_a20
ER  - 
%0 Journal Article
%A P. L. Ivankov
%T On the values of hypergeometric function with parameter from algebraic field of the fourth degree
%J Čebyševskij sbornik
%D 2022
%P 262-268
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a20/
%G ru
%F CHEB_2022_23_3_a20
P. L. Ivankov. On the values of hypergeometric function with parameter from algebraic field of the fourth degree. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 262-268. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a20/

[1] Siegel C.L., “Über einige Anwendungen Diophantischer Approximationen”, Abh. Preuss. Acad. Wiss., Phys.-Math. Kl., 1929, no. 1, 1–70

[2] Siegel C.L., Transcendental numbers, Princeton University Press, Princeton, 1949 | MR | Zbl

[3] Shidlovskii A.B., Transtsendentnye chisla, Nauka, M., 1987

[4] Osgood Ch. F., “Some theorems on diophantine approximation”, Trans. Amer. Math. Soc., 123:1 (1966), 64–87 | DOI | MR | Zbl

[5] Galochkin A.I., “Otsenki snizu lineinykh form ot znachenii nekotorykh gipergeometricheskikh funktsii”, Matematicheskie zametki, 8:1 (1970), 19–28

[6] Galochkin A.I., “Utochnenie otsenok nekotorykh lineinykh form”, Matematicheskie zametki, 20:1 (1976), 35–45 | MR | Zbl

[7] Galochkin A.I., “Ob arifmeticheskikh svoistvakh znachenii nekotorykh tselykh gipergeometricheskikh funktsii”, Sibirskii matematicheskii zhurnal, 17:6 (1976), 1220–1235 | MR | Zbl

[8] Galochkin A.I., “O neuluchshaemykh po vysote otsenkakh nekotorykh lineinykh form”, Matematicheskii sbornik, 124:3 (1984), 416–430 | MR | Zbl

[9] Korobov A.N., “Otsenki nekotorykh lineinykh form”, Vestnik MGU. Ser. 1. Matematika, mekhanika, 1983, no. 6, 36–41

[10] Popov A.Yu., “Priblizheniya nekotorykh stepenei chisla $e$”, Diofantovy priblizheniya, v. I, Izd-vo MGU, 1985, 77–85

[11] Ivankov P.L., “O priblizhenii znachenii nekotorykh funktsii”, Vestnik MGU. Seriya 1. Matematika, mekhanika, 1994, no. 4, 12–15 | Zbl

[12] Ivankov P.L., “O znacheniyakh gipergeometricheskoi funktsii s parametrom iz kvadratichnogo polya”, Chebyshevskii sbornik, 20:2 (2019), 170–177 | DOI | MR

[13] Ivankov P.L., “O sovmestnykh priblizheniyakh znachenii nekotorykh tselykh funktsii chislami iz kubicheskogo polya”, Vestnik MGU. Seriya 1. Matematika, mekhanika, 1987, no. 3, 53–56 | MR | Zbl

[14] Ivankov P.L., “O lineinoi nezavisimosti znachenii tselykh gipergeometricheskikh funktsii s irratsionalnymi parametrami”, Sibirskii matematicheskii zhurnal, 34:5 (1993), 53–62 | MR | Zbl

[15] Ivankov P.L., “O priblizhenii znachenii gipergeometricheskoi funktsii s parametrom iz veschestvennogo kvadratichnogo polya”, Matematika i matematicheskoe modelirovanie, 2017, no. 1, 25–33

[16] Ivankov P.L., “O znacheniyakh nekotorykh funktsii s irratsionalnym parametrom”, Algebra, teoriya chisel, diskretnaya geometriya i mnogomasshtabnoe modelirovanie: sovremennye problemy, prilozheniya i problemy istorii, Materialy XIX Mezhdunarodnoi konferentsii, posvyaschennoi 200-letiyu so dnya rozhdeniya P.L.Chebysheva (Tula, 2021), 204 pp.