On the probability distribution densities of an aggregated random variable for evaluating the functioning of complex systems: a three-dimensional case
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 255-261
Voir la notice de l'article provenant de la source Math-Net.Ru
\indent The probability distribution density of an aggregated random variable is constructed, which is used to estimate the parameters of an aggregated production function determined by a quadratic convolution of production functions characterizing the particular results of the functioning of elements of a complex system. The relations in quadratures for the three-dimensional case are obtained.
Keywords:
probability distribution density, production function, aggregation, model, complex system.
@article{CHEB_2022_23_3_a19,
author = {R. A. Zhukov and N. O. Kozlova},
title = {On the probability distribution densities of an aggregated random variable for evaluating the functioning of complex systems: a three-dimensional case},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {255--261},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a19/}
}
TY - JOUR AU - R. A. Zhukov AU - N. O. Kozlova TI - On the probability distribution densities of an aggregated random variable for evaluating the functioning of complex systems: a three-dimensional case JO - Čebyševskij sbornik PY - 2022 SP - 255 EP - 261 VL - 23 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a19/ LA - ru ID - CHEB_2022_23_3_a19 ER -
%0 Journal Article %A R. A. Zhukov %A N. O. Kozlova %T On the probability distribution densities of an aggregated random variable for evaluating the functioning of complex systems: a three-dimensional case %J Čebyševskij sbornik %D 2022 %P 255-261 %V 23 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a19/ %G ru %F CHEB_2022_23_3_a19
R. A. Zhukov; N. O. Kozlova. On the probability distribution densities of an aggregated random variable for evaluating the functioning of complex systems: a three-dimensional case. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 255-261. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a19/