On the probability distribution densities of an aggregated random variable for evaluating the functioning of complex systems: a three-dimensional case
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 255-261 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

\indent The probability distribution density of an aggregated random variable is constructed, which is used to estimate the parameters of an aggregated production function determined by a quadratic convolution of production functions characterizing the particular results of the functioning of elements of a complex system. The relations in quadratures for the three-dimensional case are obtained.
Keywords: probability distribution density, production function, aggregation, model, complex system.
@article{CHEB_2022_23_3_a19,
     author = {R. A. Zhukov and N. O. Kozlova},
     title = {On the probability distribution densities of an aggregated random variable for evaluating the functioning of complex systems: a three-dimensional case},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {255--261},
     year = {2022},
     volume = {23},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a19/}
}
TY  - JOUR
AU  - R. A. Zhukov
AU  - N. O. Kozlova
TI  - On the probability distribution densities of an aggregated random variable for evaluating the functioning of complex systems: a three-dimensional case
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 255
EP  - 261
VL  - 23
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a19/
LA  - ru
ID  - CHEB_2022_23_3_a19
ER  - 
%0 Journal Article
%A R. A. Zhukov
%A N. O. Kozlova
%T On the probability distribution densities of an aggregated random variable for evaluating the functioning of complex systems: a three-dimensional case
%J Čebyševskij sbornik
%D 2022
%P 255-261
%V 23
%N 3
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a19/
%G ru
%F CHEB_2022_23_3_a19
R. A. Zhukov; N. O. Kozlova. On the probability distribution densities of an aggregated random variable for evaluating the functioning of complex systems: a three-dimensional case. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 255-261. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a19/

[1] Kleiner G. B., Proizvodstvennye funktsii: teorii, metody, primenenie, Finansy i statistika, M., 1986, 239 pp.

[2] Zhukov R. A., “Otsenka effektivnosti funktsionirovaniya sotsialno-ekonomicheskikh sistem na osnove proizvodstvennykh funktsii: novyi podkhod”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Ekonomika, 21:3 (2019), 71–82 | DOI | MR

[3] Lloid E., Lenderman U., Spravochnik po prikladnoi statistike, v. 1, Finansy i statistika, M., 1989, 510 pp.

[4] Aivazyan S. A., Afanasev M. Yu., Rudenko V. A., “Nekotorye voprosy spetsifikatsii trekhfaktornykh modelei proizvodstvennogo potentsiala kompanii, uchityvayuschikh intellektualnyi kapital”, Prikladnaya ekonometrika, 27:3 (2012), 36–69

[5] Aivazyan S. A., Afanasev M. Yu., Rudenko V. A., “Issledovanie zavisimosti sluchainykh sostavlyayuschikh stokhasticheskoi proizvodstvennoi funktsii pri otsenke tekhnicheskoi effektivnosti”, Prikladnaya ekonometrika, 34:2 (2014), 3–18 | MR

[6] Zhukov R. A., “Metod otsenki rezultatov funktsionirovaniya ierarkhicheskikh sotsialno-ekonomicheskikh sistem na osnove agregirovannoi proizvodstvennoi funktsii”, Ekonomika i matematicheskie metody, 57:3 (2021), 17–31 | DOI