On the probability distribution densities of an aggregated random variable for evaluating the functioning of complex systems: a three-dimensional case
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 255-261.

Voir la notice de l'article provenant de la source Math-Net.Ru

\indent The probability distribution density of an aggregated random variable is constructed, which is used to estimate the parameters of an aggregated production function determined by a quadratic convolution of production functions characterizing the particular results of the functioning of elements of a complex system. The relations in quadratures for the three-dimensional case are obtained.
Keywords: probability distribution density, production function, aggregation, model, complex system.
@article{CHEB_2022_23_3_a19,
     author = {R. A. Zhukov and N. O. Kozlova},
     title = {On the probability distribution densities of an aggregated random variable for evaluating the functioning of complex systems: a three-dimensional case},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {255--261},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a19/}
}
TY  - JOUR
AU  - R. A. Zhukov
AU  - N. O. Kozlova
TI  - On the probability distribution densities of an aggregated random variable for evaluating the functioning of complex systems: a three-dimensional case
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 255
EP  - 261
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a19/
LA  - ru
ID  - CHEB_2022_23_3_a19
ER  - 
%0 Journal Article
%A R. A. Zhukov
%A N. O. Kozlova
%T On the probability distribution densities of an aggregated random variable for evaluating the functioning of complex systems: a three-dimensional case
%J Čebyševskij sbornik
%D 2022
%P 255-261
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a19/
%G ru
%F CHEB_2022_23_3_a19
R. A. Zhukov; N. O. Kozlova. On the probability distribution densities of an aggregated random variable for evaluating the functioning of complex systems: a three-dimensional case. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 255-261. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a19/

[1] Kleiner G. B., Proizvodstvennye funktsii: teorii, metody, primenenie, Finansy i statistika, M., 1986, 239 pp.

[2] Zhukov R. A., “Otsenka effektivnosti funktsionirovaniya sotsialno-ekonomicheskikh sistem na osnove proizvodstvennykh funktsii: novyi podkhod”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Ekonomika, 21:3 (2019), 71–82 | DOI | MR

[3] Lloid E., Lenderman U., Spravochnik po prikladnoi statistike, v. 1, Finansy i statistika, M., 1989, 510 pp.

[4] Aivazyan S. A., Afanasev M. Yu., Rudenko V. A., “Nekotorye voprosy spetsifikatsii trekhfaktornykh modelei proizvodstvennogo potentsiala kompanii, uchityvayuschikh intellektualnyi kapital”, Prikladnaya ekonometrika, 27:3 (2012), 36–69

[5] Aivazyan S. A., Afanasev M. Yu., Rudenko V. A., “Issledovanie zavisimosti sluchainykh sostavlyayuschikh stokhasticheskoi proizvodstvennoi funktsii pri otsenke tekhnicheskoi effektivnosti”, Prikladnaya ekonometrika, 34:2 (2014), 3–18 | MR

[6] Zhukov R. A., “Metod otsenki rezultatov funktsionirovaniya ierarkhicheskikh sotsialno-ekonomicheskikh sistem na osnove agregirovannoi proizvodstvennoi funktsii”, Ekonomika i matematicheskie metody, 57:3 (2021), 17–31 | DOI