About three-dimensional nets of Smolyak III
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 249-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

This is the third article in a series dedicated to Smolyak grids. The work relates to analytical number theory and it deals with the application of number theory to problems of approximate analysis. The paper shows that: the linear operator $A_{q}$ of weighted grid averages over the Smolyak grid at dimension $s\ge3$ is not normal; found the values of some trigonometric sums $S_{q}(m_1,\ldots,m_s)$ of the resin grid at the dimension $s\ge3$.
Keywords: grid Smolyak, quadrature formulas with grids of Smolyak, interpolation formula with grids of Smolyak.
@article{CHEB_2022_23_3_a18,
     author = {N. N. Dobrovol'skii and D. V. Gorbachev and V. I. Ivanov},
     title = {About three-dimensional nets of {Smolyak} {III}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {249--254},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a18/}
}
TY  - JOUR
AU  - N. N. Dobrovol'skii
AU  - D. V. Gorbachev
AU  - V. I. Ivanov
TI  - About three-dimensional nets of Smolyak III
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 249
EP  - 254
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a18/
LA  - ru
ID  - CHEB_2022_23_3_a18
ER  - 
%0 Journal Article
%A N. N. Dobrovol'skii
%A D. V. Gorbachev
%A V. I. Ivanov
%T About three-dimensional nets of Smolyak III
%J Čebyševskij sbornik
%D 2022
%P 249-254
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a18/
%G ru
%F CHEB_2022_23_3_a18
N. N. Dobrovol'skii; D. V. Gorbachev; V. I. Ivanov. About three-dimensional nets of Smolyak III. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 249-254. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a18/

[1] Dobrovolskii N. M., Esayan A. R., Yafaeva R. R., “O setkakh S. A. Smolyaka”, Sovremennye problemy matematiki, mekhaniki, informatiki, Tezisy dokladov Vserossiiskoi nauchnoi konferentsii, TulGu, Tula, 2002, 18–20

[2] Dobrovolskii N. N., “Otklonenie dvumernykh setok Smolyaka”, Chebyshevskii sbornik, 8:1(21) (2007), 110–152 | MR | Zbl

[3] Dobrovolskii N. N., “O trigonometricheskom polinome setki Smolyaka”, Materialy mezhdunarodnoi nauchnoi konferentsii “Sovremennye problemy matematiki, mekhaniki, informatiki”, Izd-vo TulGU, Tula, 2007, 36–36

[4] Dobrovolskii N. N., “O giperbolicheskom parametre setki”, Izvestiya Tulskogo gosudarstvennogo universiteta. Estestvennye nauki, 2013, no. 2-1, 6–18

[5] Dobrovolskii N. N., Giperbolicheskii parametr setok s vesami i ego primenenie, Dis. ... kand. fiz.-mat. nauk, MGU imeni M. V. Lomonosova, M., 2014

[6] N. N. Dobrovolskii, D. V. Gorbachev, V. I. Ivanov, “O trekhmernykh setkakh Smolyaka I”, Chebyshevckii sbornik, 20:3 (2019), 193–219 | DOI | MR | Zbl

[7] N. N. Dobrovolskii, D. V. Gorbachev, V. I. Ivanov, “O trekhmernykh setkakh Smolyaka II”, Chebyshevckii sbornik, 22:3 (2021), 100–121 | DOI | MR | Zbl

[8] Smolyak S. A., “Kvadraturnye i interpolyatsionnye formuly na tenzornykh proizvedeniyakh nekotorykh klassov funktsii”, DAN SSSR, 148:5 (1963), 1042–1045 | Zbl