About three-dimensional nets of Smolyak III
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 249-254

Voir la notice de l'article provenant de la source Math-Net.Ru

This is the third article in a series dedicated to Smolyak grids. The work relates to analytical number theory and it deals with the application of number theory to problems of approximate analysis. The paper shows that: the linear operator $A_{q}$ of weighted grid averages over the Smolyak grid at dimension $s\ge3$ is not normal; found the values of some trigonometric sums $S_{q}(m_1,\ldots,m_s)$ of the resin grid at the dimension $s\ge3$.
Keywords: grid Smolyak, quadrature formulas with grids of Smolyak, interpolation formula with grids of Smolyak.
@article{CHEB_2022_23_3_a18,
     author = {N. N. Dobrovol'skii and D. V. Gorbachev and V. I. Ivanov},
     title = {About three-dimensional nets of {Smolyak} {III}},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {249--254},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a18/}
}
TY  - JOUR
AU  - N. N. Dobrovol'skii
AU  - D. V. Gorbachev
AU  - V. I. Ivanov
TI  - About three-dimensional nets of Smolyak III
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 249
EP  - 254
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a18/
LA  - ru
ID  - CHEB_2022_23_3_a18
ER  - 
%0 Journal Article
%A N. N. Dobrovol'skii
%A D. V. Gorbachev
%A V. I. Ivanov
%T About three-dimensional nets of Smolyak III
%J Čebyševskij sbornik
%D 2022
%P 249-254
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a18/
%G ru
%F CHEB_2022_23_3_a18
N. N. Dobrovol'skii; D. V. Gorbachev; V. I. Ivanov. About three-dimensional nets of Smolyak III. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 249-254. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a18/