On the $\mathrm{w}$-supersolubility of a finite group factorized by mutually permutable subgroups
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 238-244
Voir la notice de l'article provenant de la source Math-Net.Ru
The subgroups $A$ and $B$ of a group $G$ are called mutually permutable if $A$ permutes with all subgroups of $B$ and $B$ permutes with all subgroups of $A$. The sufficient conditions of $\mathrm{w}$-supersolubility of a group $G = AB$ that is factorized by two mutually permutable $\mathrm{w}$-supersoluble subgroups $A$ and $B$ were obtained. Besides we found the construction of $\mathrm{w}$-supersoluble residual of such group.
Keywords:
finite group, $\mathrm{w}$-supersoluble group, mutually permutable subgroups, $\mathfrak F$-residual.
@article{CHEB_2022_23_3_a16,
author = {N. V. Artemenko and A. A. Trofimuk},
title = {On the $\mathrm{w}$-supersolubility of a finite group factorized by mutually permutable subgroups},
journal = {\v{C}eby\v{s}evskij sbornik},
pages = {238--244},
publisher = {mathdoc},
volume = {23},
number = {3},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a16/}
}
TY - JOUR
AU - N. V. Artemenko
AU - A. A. Trofimuk
TI - On the $\mathrm{w}$-supersolubility of a finite group factorized by mutually permutable subgroups
JO - Čebyševskij sbornik
PY - 2022
SP - 238
EP - 244
VL - 23
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a16/
LA - ru
ID - CHEB_2022_23_3_a16
ER -
%0 Journal Article
%A N. V. Artemenko
%A A. A. Trofimuk
%T On the $\mathrm{w}$-supersolubility of a finite group factorized by mutually permutable subgroups
%J Čebyševskij sbornik
%D 2022
%P 238-244
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a16/
%G ru
%F CHEB_2022_23_3_a16
N. V. Artemenko; A. A. Trofimuk. On the $\mathrm{w}$-supersolubility of a finite group factorized by mutually permutable subgroups. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 238-244. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a16/