On the $\mathrm{w}$-supersolubility of a finite group factorized by mutually permutable subgroups
Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 238-244.

Voir la notice de l'article provenant de la source Math-Net.Ru

The subgroups $A$ and $B$ of a group $G$ are called mutually permutable if $A$ permutes with all subgroups of $B$ and $B$ permutes with all subgroups of $A$. The sufficient conditions of $\mathrm{w}$-supersolubility of a group $G = AB$ that is factorized by two mutually permutable $\mathrm{w}$-supersoluble subgroups $A$ and $B$ were obtained. Besides we found the construction of $\mathrm{w}$-supersoluble residual of such group.
Keywords: finite group, $\mathrm{w}$-supersoluble group, mutually permutable subgroups, $\mathfrak F$-residual.
@article{CHEB_2022_23_3_a16,
     author = {N. V. Artemenko and A. A. Trofimuk},
     title = {On the $\mathrm{w}$-supersolubility of a finite group factorized by mutually permutable subgroups},
     journal = {\v{C}eby\v{s}evskij sbornik},
     pages = {238--244},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a16/}
}
TY  - JOUR
AU  - N. V. Artemenko
AU  - A. A. Trofimuk
TI  - On the $\mathrm{w}$-supersolubility of a finite group factorized by mutually permutable subgroups
JO  - Čebyševskij sbornik
PY  - 2022
SP  - 238
EP  - 244
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a16/
LA  - ru
ID  - CHEB_2022_23_3_a16
ER  - 
%0 Journal Article
%A N. V. Artemenko
%A A. A. Trofimuk
%T On the $\mathrm{w}$-supersolubility of a finite group factorized by mutually permutable subgroups
%J Čebyševskij sbornik
%D 2022
%P 238-244
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a16/
%G ru
%F CHEB_2022_23_3_a16
N. V. Artemenko; A. A. Trofimuk. On the $\mathrm{w}$-supersolubility of a finite group factorized by mutually permutable subgroups. Čebyševskij sbornik, Tome 23 (2022) no. 3, pp. 238-244. http://geodesic.mathdoc.fr/item/CHEB_2022_23_3_a16/

[1] Monakhov V. S., Introduction to the Theory of Final Groups and Their Classes, Vysh. Shkola, Minsk, 2006 (in Russian)

[2] Huppert B., Endliche Gruppen I, Springer, Berlin-Heidelberg-New York, 1967 | MR | Zbl

[3] Vasil'ev A. F., Vasil'eva T. I., Tyutyanov V. N., “On the finite groups of supersoluble type”, Siberian Math. J., 51:6 (2010), 1004–1012 | DOI | MR | Zbl

[4] Monakhov V. S., “Three Formations over $\mathfrak U$”, Math. Notes, 110:3 (2021), 339–346 | DOI | MR

[5] Ballester-Bolinches A., Ezquerro L. M., Classes of Finite Groups, Springer, Dordrecht, 2006 | MR | Zbl

[6] Ballester-Bolinches A., Esteban-Romero R., Asaad M., Products of finite groups, Walter de Gruyter, Berlin, 2010 | MR | Zbl

[7] Asaad M., Shaalan A., “On the supersolubility of finite groups”, Arch. Math., 53 (1989), 318–326 | DOI | MR | Zbl

[8] Perez E. R., “On products of normal supersoluble subgroups”, Algebra Colloq., 6:3 (1999), 341–347 | MR | Zbl

[9] Doerk K., Hawkes T., Finite soluble groups, Walter de Gruyter, Berlin-New York, 1992 | MR

[10] Skiba A. N., “On weakly s-permutable subgroups of finite groups”, J. Algebra, 315 (2007), 192–209 | DOI | MR | Zbl

[11] Ballester-Bolinches A., Fakieh W. M., Pedraza-Aguilera M. C., “On products of generalised supersoluble finite groups”, Mediterr. J. Math., 16:2 (2019), 46-1–46-7 | DOI | MR

[12] Monakhov V. S., “On the supersoluble residual of mutually permutable products”, PFMT, 34:1 (2018), 69–70 | MR | Zbl

[13] Vasil'ev A. F., Vasil'eva T. I., Tyutyanov V. N., “On the products of $\mathbb P$-subnormal subgroups of finite groups”, Siberian Math. J., 53 (2012), 47–54 | DOI | MR | Zbl

[14] Weinstein M. (ed.), Between nilpotent and solvable, Polygonal Publ. House, Passaic, 1982 | MR | Zbl